Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K M H
Với S1 = SABC và S2 = SABH . Ta có các công thức tính diện tích:
\(S_1=\frac{CK.AB}{2};\) \(S_2=\frac{HK.AB}{2}\)
\(\Rightarrow S_1.S_2=\frac{AB^2.\left(CK.HK\right)}{4}\Rightarrow\sqrt{S_1.S_2}=\frac{AB.\sqrt{CK.HK}}{2}\)(*)
Dễ thấy: ^KBH = ^KCA (Do cùng phụ với ^BAC) => \(\Delta\)HKB ~ \(\Delta\)AKC (g.g)
\(\Rightarrow\frac{HK}{AK}=\frac{BK}{CK}\Rightarrow CK.HK=AK.BK\)
Lại có: \(\Delta\)AMB vuông ở M có đường cao MK \(\Rightarrow AK.BK=MK^2\)(Hệ thức lg trg \(\Delta\)vuông)
Từ đó => \(CK.HK=MK^2\Leftrightarrow\sqrt{CK.HK}=MK\); thế vào (*) thì được:
\(\sqrt{S_1.S_2}=\frac{AB.MK}{2}=S_{AMB}=S\). Vậy có ĐPCM.
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, C] Đoạn thẳng n: Đoạn thẳng [P, Q] Đoạn thẳng p: Đoạn thẳng [P, A] Đoạn thẳng q: Đoạn thẳng [Q, A] Đoạn thẳng t_1: Đoạn thẳng [A, O] Đoạn thẳng a: Đoạn thẳng [A, I] O = (1.88, 2.28) O = (1.88, 2.28) O = (1.88, 2.28) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g
a) Ta thấy ngay tứ giác BEDC nội tiếp vì \(\widehat{BEC}=\widehat{BDC}=90^o\)
b) Do tứ giác BEDC nội tiếp nên \(\widehat{EDH}=\widehat{BCH}\)
Vậy thì \(\Delta EHD\sim\Delta BHC\left(g-g\right)\Rightarrow\frac{EH}{BH}=\frac{DH}{CH}\Rightarrow BH.DH=EH.CH\)
c) Do góc \(\widehat{EDH}=\widehat{BCH}\) nên \(\widehat{EDA}=\widehat{CBE}\) (Cùng phụ với hai góc trên)
Suy ra \(\widebat{AC}=\widebat{AP}+\widebat{QC}\)
Lại có \(\widebat{AC}=\widebat{AQ}+\widebat{QC}\Rightarrow\widebat{AP}=\widebat{AQ}\Rightarrow AP=AQ\)
(Liên hệ giữa dây và cung căng dây)
Vậy tam giác APQ cân tại A.
Ta thấy \(\widehat{AEQ}=\widebat{AQ}+\widebat{PB}=\widebat{AP}+\widebat{PB}=\widebat{AB}=\widehat{AQB}\)
Vậy \(\Delta AEQ\sim\Delta AQB\left(g-g\right)\Rightarrow\frac{AE}{AQ}=\frac{AQ}{AB}\Rightarrow AQ^2=AE.AB\Rightarrow AP^2=AE.AB\)
d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên \(AO⊥PQ\)
Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.
Khi đó \(\frac{S_1}{S_2}=\frac{\frac{1}{2}PQ.AK}{\frac{1}{2}BC.AI}=\frac{PQ}{2BC}\Rightarrow\frac{AK}{AI}=\frac{1}{2}\)
Lại có \(\Delta ABI\sim\Delta ADK\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AI}{AK}=\frac{1}{2}\)
Xét tam giác vuông ABD có \(\frac{AB}{AD}=\frac{1}{2}\Rightarrow\widehat{BAC}=60^o\Rightarrow\widebat{BC}=60^o\)
Như vậy, khi A thay đổi trên cung lớn BC thì \(\widehat{BAC}=60^o\). Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :
\(BC=R\sqrt{3}\)
A B C O I R 30 O
a) Ta thấy ngay tứ giác BEDC nội tiếp vì ^BEC=^BDC=90o
b) Do tứ giác BEDC nội tiếp nên ^EDH=^BCH
Vậy thì ΔEHD∼ΔBHC(g−g)⇒EHBH =DHCH ⇒BH.DH=EH.CH
c) Do góc ^EDH=^BCH nên ^EDA=^CBE (Cùng phụ với hai góc trên)
Suy ra ⁀AC=⁀AP+⁀QC
Lại có ⁀AC=⁀AQ+⁀QC⇒⁀AP=⁀AQ⇒AP=AQ
(Liên hệ giữa dây và cung căng dây)
Vậy tam giác APQ cân tại A.
Ta thấy ^AEQ=⁀AQ+⁀PB=⁀AP+⁀PB=⁀AB=^AQB
Vậy ΔAEQ∼ΔAQB(g−g)⇒AEAQ =AQAB ⇒AQ2=AE.AB⇒AP2=AE.AB
d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên AO⊥PQ
Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.
Khi đó S1S2 =12 PQ.AK12 BC.AI =PQ2BC ⇒AKAI =12
Lại có ΔABI∼ΔADK(g−g)⇒ABAD =AIAK =12
Xét tam giác vuông ABD có ABAD =12 ⇒^BAC=60o⇒⁀BC=60o
Như vậy, khi A thay đổi trên cung lớn BC thì ^BAC=60o. Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :
BC=R√3
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a) ta có : O là trung điểm của AH
xét đường tròn tâm O,có:E thuộc đường tròn
→tam giác A,E,H vuông tại E (t/c đường tròn)
F thược đường tròn
→tam giác A,F,H vuông tại F (t/c đường tròn)
Xét tứ giác A,E,H,F ta có Â =90 (ΔA,B,C vuông tại A)
Ê = F =90 (Δ vuông )
→tứ giác A,E,H,F là hình chữ nhật
a/ Ta có
IH vuông góc AB => ^AHI = 90
IK vuông góc AD => ^AKI = 90
=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp
b/ Xét tam giác ADI và tam giác BCI có
^AID=^BIC (góc đối đỉnh)
sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC
=> tg ADI đồng dạng tg BCI
=> \(\frac{IA}{IB}=\frac{ID}{IC}\Rightarrow IA.IC=IB.ID\)
c/
Xét tứ giác nội tiếp AHIK có
^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)
^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)
Xét tứ giác nội tiếp ABCD có
^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)
^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)
Xét hai tam giác HIK và tam giác BCD
Từ (1) và (3) => ^HIK = ^BCD
Từ (2) và (4) => ^KHI = ^DBC
=> tam giác HIK đồng dạng với tam giác BCD
Cho mình sửa lại là dấu "=" thành dấu \(\le\)
Theo mình nghĩ là đề sai
\(s_1+s_2+2\sqrt{s_1s_2}=s\)mà \(s_1+s_2=s-s_3-s_4\)
Thay vào ta được \(2\sqrt{s_1s_2}=s_3+s_4\)
Dùng cô si ta được \(2\sqrt{s_1s_2}\ge2\sqrt{s_3s_4}\)
ta ko thể chứng minh được điều này vì ko có tứ giác được xác định rõ ràng