\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDAB có 

I là trung điểm của BD

E là trung điểm của AD

DO đó: IE là đường trung bình

=>IE//AB

Xét ΔBDC có 

I là trung điểm của BD

F là trung điểm của BC

Do đó: IF là đường trung bình

=>IF//DC

b: \(\dfrac{AB+CD}{2}=EI+FI>=EF\)

a: Xét ΔADC có

E là trung điểm của AD

I là trung điểm của AC

Do đó: EI là đường trung bình

=>EI=DC/2 và EI//DC
Xét ΔCAB có

I là trung điểm của CA
F là trung điểm của CB

Do đó: IF là đường trung bình

=>IF//AB và IF=AB/2

b: EF<=EI+FI=(AB+CD)/2

c: Để EF=(AB+CD)/2 thì E,I,F thẳng hàng

=>AB//CD

 

10 tháng 7 2017

Ta có hình vẽ: A B C D E F I

a) Xét \(\Delta ADC\) có:

AE = ED (gt)

AI = IC (gt)

=> EI là đường trung bình

=> EI // DC

Xét \(\Delta CAB\) có:

AI = IC (gt)

BF = FC (gt)

=> IF là đường trung bình

=> IF // AB

b) Ta có: EF \(\le\) EI + IF

mà IF + EF = \(\dfrac{1}{2}\) AB + \(\dfrac{1}{2}\) CD

= \(\dfrac{1}{2}\) (AB + CD)

=> EF \(\le\) \(\dfrac{\left(AB+CD\right)}{2}\) (đpcm)

29 tháng 6 2017

Đường trung bình của tam giác, hình thang

18 tháng 8 2017

Bạn ơi hình như câu a bạn ghi đề sai phải là EF bé hơn bằng (AB+CD)/2 chứ

30 tháng 8 2018

Cho mình hỏi cái dấu đó ko phải dấu bé hơn hoặc bằng sao ??

6 tháng 8 2018

Câu 1

Trong tam giác ADC, E là trung điểm của AD, I là trung điểm của AC nên EI là đường trung bình 

Suy ra EI //CD Hay EI =1/2CD

Trong tam giác ABC, F là trung điểm của BC, I là trung điểm của AC nên FI là đường trung bình 

Suy ra FI //AB Hay FI=1/2AB

Câu 2

Trong tam giác EIF thì:

EF EI+IF

EF < 1/2CD +1/2AB

EF < 1/2(AB+CD)

A B D C E F I

a: Xét ΔADC có

E là trung điểm của AD

I là trung điểm của AC

Do đó: EI là đường trung bình

=>EI//CD và EI=CD/2

Xét ΔCAB có

I là trung điểm của AC

F là trung điểm của BC

Do đó: FI là đườg trung bình

=>FI//AB và FI=AB/2

b: FE<=EI+IF(BĐT tam giác)

mà EI+IF=(AB+CD)/2

nên FE<=(AB+CD)/2

a: Xét ΔADC có 

E là trung điểm của AD

K là trung điểm của AC
DO đó: EK là đường trung bình

=>EK//CD và EK=CD/2

b: Xét ΔCAB có

Flà trung điểm của CB

K là trung điểm của CA
Do đó FK là đường trung bình

=>FK//AB và FK=AB/2

EF<=EK+KF

nên EF<=1/2(AB+CD)

c:Khi EF=1/2(AB+CD) thì EF=EK+KF

=>E,K,F thẳng hàng

=>AB//CD

hay ABCD là hình thang

a: Xét ΔADC có

E là trung điểm của AD

K là trung điểm của DC

Do đó: EK là đường trung bình

=>EK=DC/2

b: Xét ΔCAB có

K là trung điểm của CA

F là trung điểm của CB

Do đó: KF là đường trung bình

=>KF=AB/2

EF<=EK+KF=(AB+CD)/2

a: Xét ΔADC có 

Elà trung điểm của AD
K là trug điểmcủa AC

Do đó: EK là đường trung bình

=>EK//CD và EK=CD/2
Xét ΔABC có

K là trung điểm của CA

F là trug điểm của CB

Do đó: KF là đường trung bình

=>KF=AB/2 và KF//AB

EF<=EK+KF

nên EF<=(AB+CD)/2

b: Để EF=1/2(AB+CD) thì E,K,F thẳng hàng

=>AB//CD