Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là trung điểm của AC .
Xét tam giác ADC ta có :
\(AE=DE\)(GT)
\(AK=CK\)(GT)
=> EK là đường trung bình của tam giác ADC
\(\Rightarrow EK=\frac{1}{2}CD\)
Xét tam giác ABC ta có :
\(BF=CF\)(GT)
\(KA=KC\)(GT)
=> KF là đường trung bình của tam giác ABC
+) Xét tam giác EFK ta có :
\(EF\le EK+KF\)
Mà \(EK=\frac{1}{2}CD\)( chứng minh trên )
\(KF=\frac{1}{2}AB\)( chứng minh trên )
\(\Rightarrow EK+KF=\frac{CD}{2}+\frac{AB}{2}\)
\(=\frac{AB+CD}{2}\)
Vậy \(EF\le\frac{AB+CD}{2}\) ( đpcm)
Vì \(\hept{\begin{cases}EA=ED\\FB=FC\end{cases}}\)(GT)
=> EF lầ đường trung bình
=> AB // CD
=> ABCD là hình thang
Vì có EF là đường trung bình
=> \(EF< \frac{AB+DC}{2}\)( đpcm )
( Tính chất đường trung bình của hình thang )
Ta có hình vẽ:
a) Xét \(\Delta ADC\) có:
AE = ED (gt)
AI = IC (gt)
=> EI là đường trung bình
=> EI // DC
Xét \(\Delta CAB\) có:
AI = IC (gt)
BF = FC (gt)
=> IF là đường trung bình
=> IF // AB
b) Ta có: EF \(\le\) EI + IF
mà IF + EF = \(\dfrac{1}{2}\) AB + \(\dfrac{1}{2}\) CD
= \(\dfrac{1}{2}\) (AB + CD)
=> EF \(\le\) \(\dfrac{\left(AB+CD\right)}{2}\) (đpcm)
Gọi M,N,P lần lượt là trung điểm các cạnh BF,AF,AB
Áp dụng tính chất đường trung bình suy ra được:
K,N,M thẳng hàng (//BE)
J,P,M thẳng hàng (//FD)
I,P,N thẳng hàng (//CF)
Áp dụng định lý Menalaus vào ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN cho thấy:Khi và chỉ khi KN/KM×JM/JP×IP/IN=1 (*) thì suy ra đpcm.
Thật vậy:
KN/KM=AE/EB (1)
JM/JP=FD/AD (2)
IP/IN=BC/FC (3) (cái này là do tính chất đường trung bình đó bạn. Khi bạn biến đổi KN và KM thì lần lượt ra (1/2)×AE và (1/2)×BE. Khi lập tỉ số KN/KM thì bạn gạch bỏ 1/2 là ra AE/BE. Chứng minh tương tự với các tỉ số kia. Mình nhớ có một tính chất nói về cái này mà mình quên tên nó rồi hic.)
Áp dụng định lý Menalaus vào ∆ABF với các điểm C,D,E lần lượt thuộc phần kéo dài của các cạnh BF,AF,AB:
AE/EB×FD/AD×BC/FC=1 (4)
Từ (1),(2),(3) và (4) ==> KN/KM×JM/JP×IP/IN=1.
==>I,J,K thẳng hàng (theo định lý Menalaus trong ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN).
Vậy I,J,K thẳng hàng (đpcm).
a) Trong tam giác ADC, ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ABC
⇒ EI // CD (tính chất đường trung bình của tam giác)
Và EI=CD/2
Trong tam giác ABC ta có:
I là trung điểm của AC
F là trung điểm của BC
Nên IF là đường trung bình của ∆ ABC
⇒ IF // AB (tính chất đường trung bình của tam giác)
Và IF=AB/2
b) Trong ∆ EIF ta có: EF ≤ EI + IF (dấu “=” xảy ra khi E, I, F thẳng hàng)
Mà EI=\(\dfrac{CD}{2}\); IF=\(\dfrac{AB}{2}\) (chứng minh trên) ⇒EF≤\(\dfrac{CD}{2}+\dfrac{AB}{2}\)
Vậy EF≤\(\dfrac{AB+CD}{2}\) (dấu bằng xảy ra khi AB // CD)
Tick nha 😘
a) Xét ΔACD có
I là trung điểm của AC
E là trung điểm của AD
Do đó: EI là đường trung bình của ΔACD
Suy ra: EI//CD
Xét ΔABC có
I là trung điểm của AC
F là trung điểm của BC
Do đó: IF là đường trung bình của ΔABC
Suy ra: IF//AB
EF là đg trung bình ứng cạnh DC của tam giác ADC => EF= CD/2 tất nhiên < (AB+CD)/2