K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và EH=BD/2(1)

Xét ΔBCD có

F là trung điểm của BC

G là trung điểm của CD

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và FG=BD/2(2)

Từ (1) và (2) suy ra EH//FG và EH=FG

hay EHGF là hình bình hành

18 tháng 12 2020

a) Mình đề nghị bạn giở SGK toán 8 tập 1 trang 93 bài 7 hình học chương I nhé.

b) Ta có: \(AC\perp BD\)

mà HE//BD=>\(HE\perp AC\)

mà AC//HG

=> \(\widehat{EHG}=90^o\)

Chứng minh tương tự với 2 trong 3 góc còn lại của tứ giác EFGH.

=> Nếu AC vuông góc với BD thì EFHG là hình chữ nhật.

Đây là hướng làm nhé, còn bạn hiếu sao thì trình bày theo ý bạn nhé:vv

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông

19 tháng 10 2021

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của DC

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EHGF là hình bình hành

12 tháng 10 2015

a) Nối AC

tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD

=> HG//AC; HG=1/2AC. (1)

Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC

=> EF//AC; EF=1/2AC. (2)

Từ (1) và (2) suy ra HG//EF; HG=EF

Tứ giác EFGH có  HG//EF; HG=EF

Vậy EFGH là hình bình hành.

b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.

Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).

                            HG=1/2AC(cmt)

nên BD=AC 

Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.

     * Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.

Giả sử  góc H=90 độ, vì HG//AC(cmt)
                                   HG vuông góc với HE

từ hai điều này suy ra AC cũng vuông góc với HE

                           lại có HE//BD(cmt)      

từ hai điều này lại suy ra AC vuông góc với BD

vậy để hình bình hành EFGH là hình thoi, hai đường chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.

* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.

Giả sử HE=HG => AC=BD(cmt)

           H=90 độ => AC vuông góc với BD(cmt)

vậy để hình bình hành EFGH là hình vuông, hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.

 

12 tháng 10 2015

a) Nối AC

tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD

=> HG//AC; HG=1/2AC. (1)

Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC

=> EF//AC; EF=1/2AC. (2)

Từ (1) và (2) suy ra HG//EF; HG=EF

Tứ giác EFGH có  HG//EF; HG=EF

Vậy EFGH là hình bình hành.

b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.

Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).

                            HG=1/2AC(cmt)

nên BD=AC 

Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.

     * Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.

Giả sử  góc H=90 độ, vì HG//AC(cmt)
                                   HG vuông góc với HE

từ hai điều này suy ra AC cũng vuông góc với HE

                           lại có HE//BD(cmt)      

từ hai điều này lại suy ra AC vuông góc với BD

vậy để hình bình hành EFGH là hình thoi, hai đường chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.

* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.

Giả sử HE=HG => AC=BD(cmt)

           H=90 độ => AC vuông góc với BD(cmt)

vậy để hình bình hành EFGH là hình vuông, hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.

 

12 tháng 10 2015

a) Nối AC

tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD

=> HG//AC; HG=1/2AC. (1)

Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC

=> EF//AC; EF=1/2AC. (2)

Từ (1) và (2) suy ra HG//EF; HG=EF

Tứ giác EFGH có  HG//EF; HG=EF

Vậy EFGH là hình bình hành.

b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.

Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).

                            HG=1/2AC(cmt)

nên BD=AC 

Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.

     * Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.

Giả sử  góc H=90 độ, vì HG//AC(cmt)
                                   HG vuông góc với HE

từ hai điều này suy ra AC cũng vuông góc với HE

                           lại có HE//BD(cmt)      

từ hai điều này lại suy ra AC vuông góc với BD

vậy để hình bình hành EFGH là hình thoi, hai đường chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.

* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.

Giả sử HE=HG => AC=BD(cmt)

           H=90 độ => AC vuông góc với BD(cmt)

vậy để hình bình hành EFGH là hình vuông, hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.


 

17 tháng 12 2023

a: Xét ΔABC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình của ΔABC

=>EF//AC và \(EF=\dfrac{AC}{2}\)

Xét ΔCDA có

G,H lần lượt là trung điểm của CD,DA

=>GH là đường trung bình của ΔCDA

=>GH//AC và \(GH=\dfrac{AC}{2}\)

Ta có: EF//AC

GH//AC

Do đó: EF//GH

Ta có: \(EF=\dfrac{AC}{2}\)

\(GH=\dfrac{AC}{2}\)

Do đó: EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

b: Xét ΔBAD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔBAD

=>\(EH=\dfrac{BD}{2}\)

mà BD=AC

và EF=AC/2

nên EH=EF

Hình bình hành EFGH có EF=EH

nên EFGH là hình thoi

=>Chu vi hình thoi EFGH là: \(4\cdot EF=4\cdot\dfrac{AC}{2}=2\cdot AC=12\left(cm\right)\)