K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

A B C D M I P N Q

a) Xét \(\Delta ABF\) có:

E là trung điểm của AB

P là trung điểm của BF

\(\Rightarrow EP\) là trug điểm của \(\Delta ABF\)

=> EP//AF và \(EP=\frac{AF}{2}\)

M là trung điểm AF (gt)

\(\Rightarrow MF=\frac{AF}{2}\)

=> I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.

b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.

Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF

=> I là trung điểm của NQ (1) 

=> MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

18 tháng 10 2019

a) Xét tam giác ABF có:

E là trung điểm của AB

P là trung điểm của BF

⇒ EP là đường trung bình của ΔABF

⇒ EP // AF và EP = AF/2

M là trung điểm AF (gt)

⇒ MF = AF/2

Do đó EP // MF và EP = MF. Vậy EPFM là hình bình hành

I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.

b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.

Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF ⇒ I là trung điểm của NQ (2)

Từ (1) và (2) ⇒ MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

9 tháng 8 2016

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

13 tháng 8 2016

ths nhe

 

30 tháng 7 2016

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 

=> MP và EF cắt nhau tại trung điểm O. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm O 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành

30 tháng 7 2016

Òh.. ths nhé

8 tháng 8 2016

t cung chưa làm đc đm

15 tháng 12 2023

a: Ta có: ABCD là hình bình hành

=>AB=CD(1)

Ta có: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)

Ta có: F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=EB=FC=FD

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFDlà hình bình hành

Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)

nên AEFD là hình thoi

c: Xét tứ giác EBCF có

BE//FC

BE=FC

Do đó: EBCF là hình bình hành

Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)

nên EBCF là hình thoi

=>EC\(\perp\)BF tại trung điểm của mỗi đường

=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF

Ta có: AEFD là hình thoi

=>AF\(\perp\)ED tại trung điểm của mỗi đường

=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED

Ta có: AEFD là hình thoi

=>EF=AD

mà AD=DC/2

nên EF=DC/2

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{CD}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

d: Để EIFK là hình vuông thì FI=FK

mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)

nên FA=FB

=>ΔFAB cân tại F

Ta có: ΔFAB cân tại F

mà FE là đường trung tuyến

nên FE\(\perp\)AB

ta có: FE\(\perp\)AB

FE//AD

Do đó: AD\(\perp\)AB