Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABF có:
E là trung điểm của AB
P là trung điểm của BF
⇒ EP là đường trung bình của ΔABF
⇒ EP // AF và EP = AF/2
M là trung điểm AF (gt)
⇒ MF = AF/2
Do đó EP // MF và EP = MF. Vậy EPFM là hình bình hành
I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.
b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.
Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF ⇒ I là trung điểm của NQ (2)
Từ (1) và (2) ⇒ MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm O.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm O
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
a: Ta có: ABCD là hình bình hành
=>AB=CD(1)
Ta có: E là trung điểm của AB
=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)
Ta có: F là trung điểm của CD
=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=EB=FC=FD
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFDlà hình bình hành
Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)
nên AEFD là hình thoi
c: Xét tứ giác EBCF có
BE//FC
BE=FC
Do đó: EBCF là hình bình hành
Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)
nên EBCF là hình thoi
=>EC\(\perp\)BF tại trung điểm của mỗi đường
=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF
Ta có: AEFD là hình thoi
=>AF\(\perp\)ED tại trung điểm của mỗi đường
=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED
Ta có: AEFD là hình thoi
=>EF=AD
mà AD=DC/2
nên EF=DC/2
Xét ΔEDC có
EF là đường trung tuyến
\(EF=\dfrac{CD}{2}\)
Do đó: ΔEDC vuông tại E
Xét tứ giác EIFK có
\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)
=>EIFK là hình chữ nhật
d: Để EIFK là hình vuông thì FI=FK
mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)
nên FA=FB
=>ΔFAB cân tại F
Ta có: ΔFAB cân tại F
mà FE là đường trung tuyến
nên FE\(\perp\)AB
ta có: FE\(\perp\)AB
FE//AD
Do đó: AD\(\perp\)AB
a) Xét \(\Delta ABF\) có:
E là trung điểm của AB
P là trung điểm của BF
\(\Rightarrow EP\) là trug điểm của \(\Delta ABF\)
=> EP//AF và \(EP=\frac{AF}{2}\)
M là trung điểm AF (gt)
\(\Rightarrow MF=\frac{AF}{2}\)
=> I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.
b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.
Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF
=> I là trung điểm của NQ (1)
=> MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).