Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay \(2\widehat{A}+2\widehat{D}=360^o\)
\(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow AB//CD\)
Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.
1) \(\widehat{A}+\widehat{D}=180^O\)
=> \(\widehat{A}=180^O-60^O=120^O\)
2) \(\frac{\widehat{B}}{\widehat{D}}=\frac{4}{5}\)=> \(\widehat{B}=60.\frac{4}{5}=48^O\)
Ta có: \(\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{C}=180^o-48^{^{ }o}=132^o\)
Hình tứ giác ABCD có 2 cạnh đáy là : Ab Và CD
Mà : \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)
Nên Hình tứ giác alf hình thang cân
A B C D
a)
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\frac{C+D}{2}+C+D=360^o\)
\(\Leftrightarrow\frac{3\left(C+D\right)}{2}=360^o\)
\(\Leftrightarrow3\left(C+D\right)=720^o\)
\(\Leftrightarrow C+D=240^o\)
\(\Leftrightarrow A+B=120\)
Xét tam giác COD ta có :
\(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^o\)
\(\Rightarrow\widehat{COD}=180^o-\left(\widehat{OCD}+\widehat{ODC}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left[360^o-\left(\widehat{BAD}+\widehat{ABC}\right)\right]\)
\(\Rightarrow\widehat{COD}=180^o-180^o+\frac{1}{2}\left(\widehat{A}+\widehat{B}\right)\)
\(\Rightarrow\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)( đpcm )
vì \(\widehat{B}\), \(\widehat{C}\) ,\(\widehat{D}\) tỉ lệ với nhau nên ta đặt :
\(\frac{\widehat{B}}{15}=\)\(\frac{\widehat{C}}{13}=\frac{\widehat{D}}{5}\) = k
=)
bạn có thể ghi rõ hơn k