K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Thưa....bạn....là....nó....khó....quá....mình....chịu....thôi....thông...cảm...nhé...

a: góc BAC=góc BMC=1/2*180=90 độ

=>CA vuông góc BK, BM vuông góc KC

góc KAI+góc KMI=180 độ

=>KAIM nội tiếp

b; góc AKI=góc AMI=1/2*sđ cung AB=góc AOB/2

xét tg ABCD có \(\widehat{A}+\widehat{C}=180^0\)

\(\Rightarrow\)ABCD là tg nt (O)  ( tg có tổng 2 góc đối = 1800 là tg nt )

xét (O) có \(\widehat{DAC}=\widehat{BAC}\)( AC là tia pg của \(\widehat{DAC}\))

\(\Rightarrow\)\(\widebat{DC}=\widebat{BC}\)(2 góc nt = nhau chắn 2 cung = nhau)

\(\Rightarrow\widehat{DBC}=\widehat{BDC}\)( 2 CUNG = NHAU CHẮN 2 GÓC NT = NHAU)

\(\Rightarrow\)\(\Delta BDC\)cân tại C 

mà CK là đường trung tuyến của \(\Delta BDC\)(K là trung điểm của BD)

\(\Rightarrow\)CK đồng thời là đường cao , đường trung tuyến , tia pg của \(\Delta BDC\)

\(\Rightarrow\)\(CK\perp BD\)              (1)

xét \(\Delta BDE\)là tam giác đều có CK là đường trung tuyến ( k là trung điểm của BD)

\(\Rightarrow\)EK đồng thời là đường cao , trung tuyến và tia phân giác của \(\Delta BDE\)

\(\Rightarrow EK\perp BD\)    (2)

TỪ (1) VÀ (2) \(\Rightarrow\)E , C , K thẳng hàng

#mã mã#

9 tháng 6 2019

A B C O M N E K T

a) Có ^AOB = 1800 - ^OAB - ^OBA = 1800 - ^BAC/2 - ^ABC/2 = 900 + (1800 - ^BAC - ^ABC)/2 = 900 + ^ACB/2

b) Dễ thấy A,M,O,E cùng thuộc đường tròn đường kính OA (Vì ^AMO = ^AEO = 900) (1)

Ta có ^AOK = 1800 - ^AOB = 1800 - (900 + ^ABC/2) = 900 - ^ACB/2 = ^CEN (Do \(\Delta\)CEN cân tại C)

=> Tứ giác AOKE nội tiếp hay A,O,K,E cùng thuộc một đường tròn (2)

Từ (1) và (2) suy ra năm điểm A,M,K,O,E cùng thuộc một đường tròn (đpcm).

c) Ta thấy A,O,K,E cùng thuộc một đường tròn (cmt) và OK cắt AE tại T

Nên \(\frac{KT}{ET}=\frac{AT}{OT}\)(Hệ thức lượng đường tròn). Kết hợp \(\frac{AT}{OT}=\frac{AB}{OB}\)(AO là phân giác ^BAT)

Suy ra \(\frac{KT}{ET}=\frac{AB}{OB}\). Mặt khác: ^BKN = ^OAE = ^BAO và ^NBK = ^OBA => \(\Delta\)BKN ~ \(\Delta\)BAO (g.g)

=> \(\frac{AB}{OB}=\frac{KB}{NB}\). Từ đây \(\frac{KT}{ET}=\frac{KB}{BN}\)=> KT.BN = KB.ET (đpcm).