K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

loading... a) Do ABCD là hình bình hành (gt)

⇒ AB = CD   (1)

Do E là trung điểm AB (gt)

⇒ AE = BE = AB : 2   (2)

Do F là trung điểm CD (gt)

⇒ CF = DF = CD : 2   (3)

Từ (1), (2) và (3)

⇒ AE = BE = CF = DF

Do ABCD là hình bình hành (gt)

⇒ AB // CD

⇒ AE // CF

Tứ giác AECF có:

AE // CF (cmt)

AE = CF (cmt)

⇒ AECF là hình bình hành

b) Do AB // CD (cmt)

⇒ BE // DF

Tứ giác BEDF có:

BE // DF (cmt)

BE = DF (cmt)

⇒ BEDF là hình bình hành

⇒ BF // DE

⇒ BK // EI và KF // DI

∆CDI có:

F là trung điểm CD (gt)

KF // DI (cmt)

⇒ K là trung điểm của CI

⇒ CK = IK (4)

∆ABK có:

E là trung điểm của AB (gt)

BK // EI (cmt)

⇒ I là trung điểm của AK

⇒ AI = IK (5)

Từ (4) và (5)

⇒ AI = IK = KC

23 tháng 9 2019

a) Vì ABCD là hình bình hành\(\Rightarrow AB//CD\)

mà \(E\in CD,F\in CD\)\(\Rightarrow AE//DF,BE//CF\left(đpcm\right)\)

b) ABCD là hình bình hành \(\Rightarrow AB=CD\)

mà \(AE=DF\left(gt\right)\)\(\Rightarrow BE=CF\left(đpcm\right)\)

c) Tứ giác AEFD có AE // DF, AE = DF

\(\Rightarrow\)Tứ giác AEFD là hình bình hành (đpcm)

 d) Chứng minh tương tự phần c ta suy ra đpcm

10 tháng 10

TÔi cần hình của bài này

a: Xét ΔABC có

E là trung điểm của BC

F là trung điểm của AC

Do đó: EF là đường trung bình của ΔABC

Suy ra: EF//AD và EF=AD

Xét tứ giác ADEF có

EF//AD

EF=AD

Do đó: ADEF là hình bình hành

mà \(\widehat{FAD}=90^0\)

nên ADEF là hình chữ nhật

mà AD=AF

nên ADEF là hình vuông

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Xétbtứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

mà AM=AD

nên AMND là hình thoi

c: Xét ΔANQ có

AD là đường trung tuyến

AD=QN/2

Do đó: ΔANQ vuông tại A

Xét tứ giác ANKQ có

D là trung điểm của AK

D là trung điểm của NQ

Do đó; ANKQ là hình bình hành

mà \(\widehat{NAQ}=90^0\)

nên ANKQ là hình chữ nhật 

b: Xét tứ giác MCNA có 

MC//NA

MC=NA

Do đó: MCNA là hình bình hành

Suy ra: MA//NC và MA=NC(2)

hay MP//NQ(1)

Xét tứ giác BMNA có 

BM//NA

BM=NA

Do đó: BMNA là hình bình hành

Suy ra: BN và MA cắt nhau tại trung điểm của mỗi đường

hay P là trung điểm của MA

=>PM=MA/2(3)

Xét tứ giác MCDN có

MC//DN

MC=DN

Do đó: MCDN là hình bình hành

Suy ra: MD và CN cắt nhau tại trung điểm của mỗi đường

=>Q là trung điểm của CN

=>NQ=CN/2(4)

Từ (2), (3) và (4) suy ra MP//NQ(5)

Từ (1) và (5) suy ra MPNQ là hình bình hành(6)

Xét hình bình hành BMNA có BM=BA

nên BMNA là hình thoi

=>BN⊥MA

hay \(\widehat{MPN}=90^0\)(7)

Từ (6) và (7) suy ra PMQN là hình chữ nhật

c: Để hình chữ nhật PMQN là hình vuông thì MP=PN

=>BN=MA

=>BMNA là hình vuông

=>\(\widehat{ABC}=90^0\)

3 tháng 1 2022

Hình đâu bạn