Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường chéo MP và NQ
Trong △ MNP ta có:
X là trung điểm của MN
Y là trung điểm của NP
nên XY là đường trung bình của △ MNP
⇒ XY // MP và XY = 1/2 MP (tính chất đường trung bình của tam giác) (3)
Trong △ QMP ta có:
T là trung điểm của QM
Z là trung điểm của QP
nên TZ là đường trung bình của △ QMP
⇒ TZ // MP và TZ = 1/2 MP (tính chất đường trung bình của tam giác) (4)
Từ (3) và (4) suy ra: XY // TZ và XY = TZ nên tứ giác XYZT là hình bình hành.
Trong △ MNQ ta có XT là đường trung bình
⇒ XT = 1/2 QN (tính chất đường trung bình của tam giác)
Tứ giác MNPQ là hình chữ nhật ⇒ MP = NQ
Suy ra: XT = XY. Vậy tứ giác XYZT là hình thoi
S X Y Z T = 1/2 XZ. TY
mà XZ = MQ = 1/2 BD = 1/2. 8 = 4 (cm);
TY = MN = 1/2 AC = 1/2 .6 =3 (cm)
Vậy : S X Y Z T = 1/2. 3. 4 = 6( c m 2 )
Tứ giác có thể là hình vuông, chữ nhật phải không bạn?
P/s: Hỏi thôi chớ không trả lời đâu :D
Xét ΔMNQ có
A là trung điểm của MN
D là trung điểm của MQ
Do đó: AD là đường trung bình của ΔMNQ
Suy ra: AD//NQ và AD=NQ/2(1)
Xét ΔNPQ có
B là trung điểm của NP
C là trung điểm của QP
Do đó: BC là đường trung bình của ΔNPQ
Suy ra: BC//NQ và BC=NQ/2(2)
Từ (1) và (2) suy ra AD//BC và AD=BC
Xét ΔMNP có
A là trung điểm của MN
B là trung điểm của NP
Do đó: AB là đường trung bình của ΔMNP
Suy ra: AB=MP/2=NQ/2(3)
Từ (1) và (3) suy ra AD=AB
Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
mà AB=AD
nên ABCD là hình thoi
* Xét tam giác ABC có M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác .
Suy ra: MN// AC và
* Xét tam giác ACD có P và Q lần lượt là trung điểm của CD và AD nên PQ là đường trung bình của tam giác
Suy ra: PQ // AC và
Từ (1) và (2) suy ra: MN// PQ và MN = PQ
Do đó, tứ giác MNPQ là hình bình hành.
* Ta có
Hình bình hành MNPQ có 1 góc vuông nên là hình chữ nhật
Chọn đáp án C
A B C D M N P Q
Xét t/g ABD có: AM=BM (gt), AQ=DQ (gt)
=>MQ là đường trung bình của tam giác ABD
=>MQ // BD và MQ = 1/2BD (1)
CM tương tự với t/g CBD ta có: NP // BD và NP = 1/2BD (2)
Từ (1) và (2) => MQ // NP và MQ = NP
=> MNPQ là hình bình hành (3)
Xét t/g ABC ta có: AM=BM (gt), BN = CN (gt)
=> MN là đg trung bình của t/g ABC
=> MN // AC
Mà AC _|_ BD (gt)
=> MN _|_ BD
Mà NP // BD (cmt)
=> MN _|_ NP (4)
Từ (3) và (4) => MNPQ là hình chữ nhật
Trong △ ABD ta có:
M là trung điểm của AB
Q là trung điểm của AD nên MQ là đường trung bình của △ ABD.
⇒ MQ // BD và MQ = 1/2 BD (tính chất đường trung bình của tam giác) (1)
Trong △ CBD ta có:
N là trung điểm của BC
P là trung điểm của CD
nên NP là đường trung bình của △ CBD
⇒ NP // BD và NP = 1/2 BD (tính chất đường trung bình của tam giác) (2)
Từ (1) và (2) suy ra: MQ // NP và MQ = NP nên tứ giác MNPQ là hình bình hành
AC ⊥ BD (gt)
MQ // BD
Suy ra: AC ⊥ MQ
Trong △ ABC có MN là đường trung bình ⇒ MN // AC
Suy ra: MN ⊥ MQ hay (NMQ) = 90 0
Vậy tứ giác MNPQ là hình chữ nhật.