K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2015

A B C D E F 1 1 2 2

Xét Tứ giác ABCD có: góc A + B + C + D = 360o =>  100o + 120o + (C + D) = 360=> góc C + D = 140o

DE; CE lần lượt là p/g của góc D; C => góc D1 = D/ 2 ; C1 = C/ 2 => góc (D1 + C1) = (D + C) /2 = 700

Xét tam giác DEC có: góc D+ góc E + góc C1 = 180=> góc DEC = 180- (D1 + C1) = 180- 70= 110o

Vì tia Dx là p/g ngoài của góc D; DE là p/g trong của góc D => Dx vuông góc với DE => DF vuông góc với DE => góc EDF = 900

=> góc D= 90- D1

Vì tia Cy là p/g ngoài  của góc ACD ; CE là p/g trong của góc ACD => Cy vuông góc với CE => CF vuông góc với CE => góc ECF = 90o

=> góc C2 = 90o - C1

Xét tam giác CDF có: góc C+ góc CFD + góc D2 = 180o

=> góc CFD + (90- D1 + 90- C1) = 180o => góc CFD + 180o - (D1 + C1) = 180=> góc CFD = D1 + C1 = 90o

 

Bài 1) 

Trên AD lấy E sao cho AE = AB 

Xét ∆ACE và ∆ACB ta có : 

AC chung 

DAC = BAC ( AC là phân giác) 

AB = AE (gt)

=> ∆ACE = ∆ACB (c.g.c)

=> CE = CB (1)

=> AEC = ABC = 110°

Mà AEC là góc ngoài trong ∆EDC 

=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)

=> ECD = 110 - 70 

=> EDC = 40°

Xét ∆ EDC : 

DEC + EDC + ECD = 180 °

=> CED = 180 - 70 - 40 

=> CED = 70° 

=> CED = EDC = 70° 

=> ∆EDC cân tại C 

=> CE = CD (2)

Từ (1) và (2) :

=> CB = CD (dpcm)

b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°

12 tháng 6 2017

Ta có: góc A+B+C+D=360 =>C+D=150 độ 
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác) 
=>E=180-75=105 
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk) 
nên ECF+EDF=90+80=180 độ 
=>CFD= 360-180-105=75 
Xong rồi, nhưng bạn lập luận chặt chẽ hơn nhé 

13 tháng 7 2022

Sao lại 90+80=180 bạn

6 tháng 8 2016

Tứ giác ABCD có A^+B^+C^+D^=360độ

D^+C^=150độ

\(\frac{1}{2}\)D^+\(\frac{1}{2}\)C^=\(\frac{150}{2}\)độ

\(\Rightarrow\)D2^+C2^=\(\frac{150}{2}\)=75độ

Tam giác DEC có D2^+C2^+CED^=180độ

CED^=105độ

27 tháng 6 2017

hình vẽ của bn đẹp quá