K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

\(\frac{AE}{DE}=\frac{AF}{CF}\left(1\right)\) EF//DC, \(\frac{AG}{BG}=\frac{AF}{CF}\left(2\right)\) FG//BC

(1) (2)\(\Rightarrow\frac{AE}{DE}=\frac{AG}{BG}\Rightarrow AE.BG=DE.AG\) Sai đề

a: GE//CD

=>AG/AC=AE/AD

GH//BC

=>AG/AC=AH/AB

=>AE/AD=AH/AB

=>EH//BD

b: Vì EH//BD

nên AE/ED=AH/HB

=>AE*HB=AH*DE

4 tháng 2 2023

a) Ta có: HG // BC (gt).

\(\Rightarrow\dfrac{AH}{HB}=\dfrac{AG}{AC}\) (1) (Định lý Ta - let).

Ta có: GE // CD (gt).

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AC}\) (2) (Định lý Ta - let).

Từ (1) và (2) \(\Rightarrow\dfrac{AE}{AD}=\dfrac{AH}{AB}.\)

\(\Rightarrow\) HE // BD.

b) Ta có: HE // BD (cmt).

\(\Rightarrow\dfrac{AE}{DE}=\dfrac{AH}{BH}\) (Định lý Ta - let).

\(\Rightarrow AE.BH=AH.DE\left(đpcm\right).\)

4 tháng 2 2023

Các bước giải:

 a) Vì EG // CD nên theo định lí Thalet ta có: \(\dfrac{AE}{AD}\) = \(\dfrac{AG}{AC}\) 

    Vì GH // CB nên theo định lí Thalet ta có:  \(\dfrac{AG}{AC}\)\(\dfrac{AH}{AB}\) 

⇒ \(\dfrac{AG}{AC}\) = \(\dfrac{AH}{AB}\) ⇒ HE // BD (đpcm) (Thalet đảo)

b) HE // BD ⇒ \(\dfrac{AE}{AD}\) = \(\dfrac{AH}{AB}\)

⇒ \(\dfrac{AE}{AD-AE}\) = \(\dfrac{AH}{AB-AH}\)    

⇒ \(\dfrac{AE}{DE}\) = \(\dfrac{AH}{BH}\)

\(AE.BH=AH.DE\left(đpcm\right)\)

4 tháng 2 2023

Các bước giải:

 a) Vì EG // CD nên theo định lí Thalet ta có: \(\dfrac{AE}{AD}\) = \(\dfrac{AG}{AC}\) 

    Vì GH // CB nên theo định lí Thalet ta có:  \(\dfrac{AG}{AC}\)\(\dfrac{AH}{AB}\)

⇒ \(\dfrac{AG}{AC}\) = \(\dfrac{AH}{AB}\) ⇒ HE // BD (đpcm) (Thalet đảo)

b) HE // BD ⇒  \(\dfrac{AE}{AD}\) = \(\dfrac{AH}{AB}\)

⇒  \(\dfrac{AE}{AD-AE}\)\(\dfrac{AH}{BH-AH}\)

⇒ \(\dfrac{AE}{DE}\) = \(\dfrac{AH}{BH}\)

⇒ AE.BH = AH.DE

NM
11 tháng 2 2021

A B C D E I F

THeo thales ta có

\(\Rightarrow\hept{\begin{cases}\frac{EF}{AB}=\frac{CE}{CA}\\\frac{EI}{CD}=\frac{AE}{AC}\end{cases}\Rightarrow}\frac{EF}{AB}+\frac{EI}{CD}=\frac{CE}{CA}+\frac{AE}{AC}=1\)VẬY ta có đpcm