Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành
b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE
Để DE đi qua A tức là D;E;A thằng hàng
mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC
hình bình hành có 2 đường chéo vuông góc là hình thoi
c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180
Mượn hình của bạn Manh nhé!
a) Ta có: DB // CK ( \(\perp\)AB)
=> DB // CE (1)
BH // DC ( \(\perp\) AC )
=> DC // BE (2)
Từ (1) ; (2) => DBEC là hình bình hành.
b) +) Theo câu a) DBEC là hình bình hành
=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm BC => M là trung điểm DE.
+) CK; BH là hai đường cao của \(\Delta ABC\) và CK ; BH cắt nhau tại E.
=> E là trực tâm của \(\Delta ABC\)
=> AE là đường cao hạ từ A. (3)
Theo giả thiết DE qua A mà DE cắt BC tại M là trung điểm cạnh BC
=> AE qua trung điểm của cạnh BC
=> AE là đường trung tuyến của \(\Delta ABC\) (4)
Từ (3); (4) => \(\Delta ABC\) cân tại A
c) Em tham khảo bài làm bạn Manh.
Xét \(\Delta AEB\)và \(\Delta DEC\)có
\(\hept{\begin{cases}\widehat{AEB}=\widehat{DEC}\\\widehat{BAE}=\widehat{CDE}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AEB\approx\Delta DEC\)
\(\Rightarrow\frac{AE}{DE}=\frac{BE}{CE}\)
\(\Rightarrow EA.EC=DE.BE\left(1\right)\)
Xét \(\Delta ABE\)và \(\Delta DBA\)có
\(\hept{\begin{cases}\widehat{BAE}=\widehat{BDA}\left(gt\right)\\\widehat{ABE}\left(chung\right)\end{cases}}\)
\(\Rightarrow\Delta ABE\approx\Delta DBA\)
\(\Rightarrow\frac{AB}{DB}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=DB.BE\left(2\right)\)
Theo đề bài ta cần chứng minh
\(BE^2=AB^2-EA.EC\)
\(\Leftrightarrow BE^2=AB^2-DE.BE\)(theo (1))
\(\Leftrightarrow BE\left(BE+DE\right)=AB^2\)
\(\Leftrightarrow BE.BD=AB^2\) (Theo (2) thì cái này đúng)
Vậy ta có ĐPCM
bạn có thể gửi hình vào facebook của mình https://www.facebook.com/maximilian.mark.16 để mình giải thử cho bạn