\(MN\perp BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Ta có 

\(MN\perp BC;AB\perp BC\) => MN//AB \(\Rightarrow\frac{MN}{AB}=\frac{CM}{CA}\) (Talet trong tam giác)

\(MP\perp AD;CD\perp AD\) => MP//CD \(\Rightarrow\frac{MP}{CD}=\frac{AM}{CA}\) (Talet trong tam giác)

\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{CM}{CA}+\frac{AM}{CA}=\frac{CA}{CA}=1\left(dpcm\right)\)

28 tháng 2 2020

A B C D N P M

\(\hept{\begin{cases}AB\perp BC\left(\widehat{B}=90^0\right)\\MN\perp BC\left(gt\right)\end{cases}\Rightarrow AB//MN}\)( từ vuông góc đến song song )

Xét tam giác ABC có: \(AB//MN\left(cmt\right)\)

\(\Rightarrow\frac{MN}{AB}=\frac{MC}{AC}\)( hệ quả của định lý Ta-let)

Vì \(\hept{\begin{cases}AD\perp DC\left(\widehat{D}=90^0\right)\\MP\perp AD\left(gt\right)\end{cases}\Rightarrow}MP//DC\)( từ vuông góc đến song song )

Xét tam giác ADC có \(MP//DC\left(cmt\right)\)

\(\Rightarrow\frac{MP}{CD}=\frac{AM}{AC}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{MC}{AC}+\frac{AM}{AC}=\frac{AC}{AC}=1\left(đpcm\right)\)

18 tháng 1 2020

M P N A B D C

Ta có MN vuông góc BC   (gt)

         AB vuông góc BC  (gt)

=> MN // AB

Theo đinh lí Talet ta được \(\frac{MN}{AB}=\frac{CN}{BC}=\frac{CM}{AC}\) (1)

Ta có MP vuông góc AD  (gt)

         DC  vuông góc AD  (gt)

=> MP // DC

Theo đinh lí Talet ta được \(\frac{MP}{DC}=\frac{AP}{AD}=\frac{AM}{AC}\) (2)

Từ (1) và (2) => \(\frac{MN}{BC}+\frac{MP}{AD}=\frac{CM}{AC}+\frac{AM}{AC}=\frac{CM+AM}{AC}=\frac{AC}{AC}=1\)(ĐPCM)

Wi ơi. Theo bạn đề bài đúng bay sai? Mik suy nghĩ một tuần rồi mà vẫn k lm giống đề đc , mik chỉ lm đc như Wi lm thoyy

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
30 tháng 3 2020

Bạn nào cần thì xem nè ( đợi lâu quá trời luôn mà không có ai trả lời mình hết ) 

Gọi I,J lần lượt là trung điểm của EC và ED.
Ta có tứ giác EINJ là hình bình hành ⇒EJ=NI,EI=NJ và ∠EIN=∠EJN.
Chú ý các tam giác CKE,DHE vuông tại K,H, theo tính chất đường trung tuyến
⇒JH=JE=IN,IK=IE=JN
Ta có KIC,HJD là các tam giác cân tại I và J, từ đó
∠KIE=2∠ACB=2∠ADB=∠HJE⇒∠KIN=∠HJN.
Do đó △KIN=△NJH (c.g.c)⇒NK=NH.
Chứng minh tương tự MH=MK⇒MN là đường trung trực của HK.
Bởi vậy HK⊥MN