Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{BCA}=180-90-60=30\)
Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)
Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)
Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)
\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)
\(\Rightarrow\widehat{BFC}=60\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều
a) Xét ΔABC∆ABC vuông tại AA
ˆABC=60oABC^=60o
⇒ACB=30o⇒ACB=30o
Ta có: BEBE là phân giác của ˆBB^
⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o
⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o
Xét ΔCBF∆CBF vuông tại CC có:
ˆCBF=30oCBF^=30o
⇒ˆCFB=60o⇒CFB^=60o
Xét ΔCEF∆CEF có:
ˆFEC=ˆCFB=60oFEC^=CFB^=60o
Do đó ΔCEG∆CEG đều
b) Sửa đề: ABCDABCD là hình thang cân
Ta có:
ˆBAC=ˆBDC=90oBAC^=BDC^=90o
Do đó ABCDABCD là tứ giác nội tiếp
⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o
Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o
nên ˆABD=ˆDBCABD^=DBC^
⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD
Mặt khác: ΔDBC∆DBC vuông tại DD có:
ˆDBC=30oDBC^=30o
⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^
Do đó ABCDABCD là hình thang cân
Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
Suy ra: \(\widehat{ACB}=\widehat{ADB}\)(hai góc nội tiếp cùng chắn cung AB) và \(\widehat{BAC}=\widehat{BDC}\)(hai góc nội tiếp cùng chắn cung BC)
mà \(\widehat{ADB}=\widehat{BDC}\)
nên \(\widehat{BAC}=\widehat{BCA}\)
Xét ΔABC có \(\widehat{BAC}=\widehat{BCA}\)
nên ΔBAC cân tại B
1:
Xét ΔCHD có \(\widehat{CHD}+\widehat{HCD}+\widehat{HDC}=180^0\)
=>\(\widehat{HCD}+\widehat{HDC}=180^0-110^0=70^0\)
=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=70^0\)
=>\(\widehat{ADC}+\widehat{BCD}=140^0\)
Xét tứ giác ABCD có
\(\widehat{ADC}+\widehat{BCD}+\widehat{DAB}+\widehat{ABC}=360^0\)
=>\(\widehat{DAB}+\widehat{ABC}=220^0\)
mà \(\widehat{DAB}-\widehat{ABC}=40^0\)
nên \(\widehat{ABC}=\dfrac{220^0-40^0}{2}=90^0\)
=>BA\(\perp\)BC
2:
Xét tứ giác ABCD có
\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)
=>\(\widehat{BCD}+\widehat{ADC}=360^0-220^0=140^0\)
=>\(2\cdot\left(\widehat{KCD}+\widehat{KDC}\right)=140^0\)
=>\(\widehat{KCD}+\widehat{KDC}=70^0\)
Xét ΔCKD có
\(\widehat{CKD}+\widehat{KCD}+\widehat{KDC}=180^0\)
=>\(\widehat{CKD}=180^0-70^0=110^0\)
a: Xét tứ giác ABED có
góc BAD=góc ADE=góc BED=90 độ
nên ABED là hình chữ nhật
b: Xét tứ giác BMCD có
BM//CD
BM=CD
Do đo; BMCD là hình bình hành
c:
Gọi O là trung điểm của AE
góc AIE=90 độ
mà IO là trung tuyến
nên IO=AE/2=BD/2
Xét ΔIBD có
IO là trung tuyến
IO=BD/2
Do đó: ΔIBD vuông tại I
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
Đề bài bị sai nhé
Phải là góc A + Góc C bằng 180 độ nhé. Tức là tứ giác ABCD là tứ giác nội tiếp đường tròn. Bài này là bài nâng cao về hình thang cân toán lớp 8