K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

a) Ta có:

\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{BCA}=180-90-60=30\)

Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)

Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)

Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)

\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)

\(\Rightarrow\widehat{BFC}=60\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều

21 tháng 9 2020

a) Xét ΔABC∆ABC vuông tại AA

ˆABC=60oABC^=60o

⇒ACB=30o⇒ACB=30o

Ta có: BEBE là phân giác của ˆBB^

⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o

⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o

Xét ΔCBF∆CBF vuông tại CC có:

ˆCBF=30oCBF^=30o

⇒ˆCFB=60o⇒CFB^=60o

Xét ΔCEF∆CEF có:

ˆFEC=ˆCFB=60oFEC^=CFB^=60o

Do đó ΔCEG∆CEG đều

b) Sửa đề: ABCDABCD là hình thang cân

Ta có:

ˆBAC=ˆBDC=90oBAC^=BDC^=90o

Do đó ABCDABCD là tứ giác nội tiếp

⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o

Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o

nên ˆABD=ˆDBCABD^=DBC^

⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD

Mặt khác: ΔDBC∆DBC vuông tại DD có:

ˆDBC=30oDBC^=30o

⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^

Do đó ABCDABCD là hình thang cân

Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)

nên ABCD là tứ giác nội tiếp

Suy ra: \(\widehat{ACB}=\widehat{ADB}\)(hai góc nội tiếp cùng chắn cung AB) và \(\widehat{BAC}=\widehat{BDC}\)(hai góc nội tiếp cùng chắn cung BC)

mà \(\widehat{ADB}=\widehat{BDC}\)

nên \(\widehat{BAC}=\widehat{BCA}\)

Xét ΔABC có \(\widehat{BAC}=\widehat{BCA}\)

nên ΔBAC cân tại B

21 tháng 10 2023

1:

Xét ΔCHD có \(\widehat{CHD}+\widehat{HCD}+\widehat{HDC}=180^0\)

=>\(\widehat{HCD}+\widehat{HDC}=180^0-110^0=70^0\)

=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=70^0\)

=>\(\widehat{ADC}+\widehat{BCD}=140^0\)

Xét tứ giác ABCD có

\(\widehat{ADC}+\widehat{BCD}+\widehat{DAB}+\widehat{ABC}=360^0\)

=>\(\widehat{DAB}+\widehat{ABC}=220^0\)

mà \(\widehat{DAB}-\widehat{ABC}=40^0\)

nên \(\widehat{ABC}=\dfrac{220^0-40^0}{2}=90^0\)

=>BA\(\perp\)BC

2:

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(\widehat{BCD}+\widehat{ADC}=360^0-220^0=140^0\)

=>\(2\cdot\left(\widehat{KCD}+\widehat{KDC}\right)=140^0\)

=>\(\widehat{KCD}+\widehat{KDC}=70^0\)

Xét ΔCKD có

\(\widehat{CKD}+\widehat{KCD}+\widehat{KDC}=180^0\)

=>\(\widehat{CKD}=180^0-70^0=110^0\)

a: Xét tứ giác ABED có

góc BAD=góc ADE=góc BED=90 độ

nên ABED là hình chữ nhật

b: Xét tứ giác BMCD có

BM//CD
BM=CD
Do đo; BMCD là hình bình hành

c:

Gọi O là trung điểm của AE

góc AIE=90 độ

mà IO là trung tuyến

nên IO=AE/2=BD/2

Xét ΔIBD có

IO là trung tuyến

IO=BD/2

Do đó: ΔIBD vuông tại I

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

6 tháng 9 2021

 Đề bài bị sai nhé
 Phải là góc A + Góc C bằng 180 độ nhé. Tức là tứ giác ABCD là tứ giác nội tiếp đường tròn. Bài này là bài nâng cao về hình thang cân toán lớp 8