Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°
Ta có:
+, Gọi giao của DC và BE là K
Vì DF//BE nên gócCDF =góc CKB ( 2 góc đồng vị )
mà góc CKB +gócCBK =900 ( vì gócC=900 ) ( 1)
+, gócCBK =gócABE ( vì BE là tia pg của gócB)
và gócABE =gócAFD ( vì BE//DF)
=> gócCBK= gócAFD (2)
mà gócAFD +gócADF=900 (vì góc A=900) (3)
Từ (1)(2)(3) ta có góc ADF = góc CDF
=> DF là tia pg của góc D ( đpcm )
Cho mik 1 like nhé!!! Chúc bạn làm bài tốt .
CM DF là tia phân giác của góc D chứ bn ??? xem lại đầu bài họ mk
Em tham khảo nhé! Xem TH2:
Câu hỏi của Siêu sao bóng đá - Toán lớp 8 - Học toán với OnlineMath