Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:
\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)
Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Xét tam giác \(ABD\) có:
\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Theo định lí Thales đảo suy ra \(EF//BD\).
b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:
\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)
Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:
\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)
Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)
Theo định lí Thales đảo suy ra \(GH//BD\).
Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:
\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).
a: Xét ΔADC có OF//DC
nên AF/AD=AO/AC
Xét ΔABC có EO//BC
nên AE/AB=AO/AC
=>AF/AD=AE/AB
=>EF//BD
b: OH//AD
=>CH/CD=CO/CA
OG//AB
=>CG/BC=CO/CA
=>CG/BC=CH/CD
=>GH//BD
=>CH/DH=CG/BG
=>CH*BG=DH*CG
a.
Theo định lý Thales,ta có:
\(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)
\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)
Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.
b.
Theo định lý Thales,ta có:
\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)
\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)
Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)
a) Xét tam giác ADC: EG // DC (gt).
=> \(\dfrac{AE}{AD}=\dfrac{AG}{AB}\) (Định lý Talet). (1)
Xét tam giác ACB: HG // CB (gt).
=> \(\dfrac{AG}{AC}=\dfrac{AH}{AB}\) (Định lý Talet). (2)
Từ (1) và (2) => \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(=\dfrac{AG}{AC}\right).\)
Xét tam giác ADB: \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(cmt\right).\)
=> HE // BD (Định lý Talet đảo).
a: Xét ΔABC có EI//BC
nên \(\dfrac{AE}{AB}=\dfrac{AI}{AC}\left(1\right)\)
Xét ΔADC có FI//DC
nên \(\dfrac{AI}{AC}=\dfrac{AF}{AD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)
Xét ΔABD có \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)
nên EF//BD
b: Xét ΔCBA có GI//AB
nên \(\dfrac{CG}{BG}=\dfrac{CI}{IA}\left(3\right)\)
Xét ΔCAD có IH//AD
nên \(\dfrac{CI}{IA}=\dfrac{CH}{HD}\left(4\right)\)
Từ (3),(4) suy ra \(\dfrac{CG}{BG}=\dfrac{CH}{HD}\)
=>\(CG\cdot HD=BG\cdot CH\)