Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình lm tắt bạn tự hiểu nhé, ko hiểu chỗ nào thì hỏi mik
tam giác ADC= tam giác ABC (c.c.c)
=> A1=A2 (2 góc tg ứng)
=> AC là p/giác tam giác ADB (1)
Mà tam giác ABD cân do AD= AB ( giả thiết) (2)
từ (1) và (2) => AC là trung trực tam giác ADB
=> AClà trung trực BD (đpcm)
còn tính cái kia thì bạn lm theo hướng như sau
Vì tam giác ADC = tam giác ABC (cmt)
=> C1=C2= góc DCB :2 = 60 độ :2 = 30 độ
Còn A1=A2(cmt) => A1=A2=góc DAB:2 = 120 độ :2 = 60 độ
Xét tam giác ABC có tổng 3 góc = 180 độ r trừ đi góc A2 và góc C2 vừa tìm ra góc B= 90 độ
Vì tam giác ADC = tam giác ABC (cmt)
=> góc B= góc D ( 2 góc tg ứng) => góc D= 90 độ
Vậy D=B=90 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: BA=BC
DA=DC
Do đó:BD là đường trung trực của AC
b: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Xét ΔBAD và ΔBCD có
BA=BC
AD=CD
BD chung
Do đó:ΔBAD=ΔBCD
Suy ra: góc BAD=góc BCD
hay a=c
b-d=10 nên d=b-10
a-b=21 nên a=b+21
c=a nên c=b+21
Xét tứ giác ABCD có góc A+góc B+góc C+góc D=360
=>a+b+c+d=360
=>b-10+b+21+b+21+b=360
=>4b+32=360
=>4b=328
hay b=82
=>a=c=b+21=103 độ
d=b-10=72
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình nha
a) Có : AB=AD(gt)
=> A\(\in\)đường trung trực của đoạn thẳng BD(1)
Có: CB=CD(gt)
=> C\(\in\)đường trung trực của đoạn thẳng BD(2)
Từ 1,2 suy ra:
A,C \(\in\)Đường trung trực của đoạn thẳng BD
=> AC là đường trung trực của đoạn thẳng BD
b, Xét tam giác ABC và ADC có:
AB=AD(gt)
BC=DC(gt)
AC: góc chung
=> tam giác ABC=ADC( c.c.c)
=> ^BAC=^DAC(2 góc tương ứng)
^BCA=^DCA(2 góc tương ứng)
^ABC=^ADC(2 góc tương ứng)
Có: ^BAD=^BAC+^DAC=100
=> ^BAC=^DAC=50
Lại có ^BCD=^BAC+^DCA=60
=> ^BAC=^DCA=30
Xét tam giác ABC có: ^BAC+^ACB+^ABC=180
=> ^ABC=180- ^ACB - ^BAC=180 -60-100=20
Vậy ^B = ^C = 20
Tích mink nha (^.^)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD
CB = CD (gt) => C thuộc đường trung trực của BD.
Vậy AC là đường trung trực của BD.
b) Xét ∆ ABC và ∆ADC có AB = AD (gt)
BC = DC (gt)
AC cạnh chung
nên ∆ ABC = ∆ADC (c.c.c)
Suy ra: ⇒ \(\widehat{B}=\widehat{D}\)
Ta có \(\widehat{B}+\widehat{D}=360^o-\left(100^o+60^o\right)=200^o\)
Do đó \(\widehat{B}=\widehat{D}=100^o\)
Bài giải:
a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD
CB = CD (gt) => C thuộc đường trung trực của BD.
Vậy AC là đường trung trực của BD.
b) Xét ∆ ABC và ∆ADC có AB = AD (gt)
BC = DC (gt)
AC cạnh chung
nên ∆ ABC = ∆ADC (c.c.c)
Suy ra: ⇒ˆB=ˆD⇒B^=D^
Ta có ˆB+ˆD=3600−(100+60)=200B^+D^=3600−(100+60)=200
Do đó ˆB=ˆD=1000B^=D^=1000
![](https://rs.olm.vn/images/avt/0.png?1311)
Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 độ
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
Suy ra tam giác CED cân tại C , tức là CE = CD (2)
Từ (1) và (2) => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°
![](https://rs.olm.vn/images/avt/0.png?1311)
a) HS tự chứng minh
b) Sử dụng tổng bốn góc trong tứ giác và chú ý B ^ = D ^
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình lm tắt bạn tự hiểu nhé, ko hiểu chỗ nào thì hỏi mik
tam giác ADC= tam giác ABC (c.c.c)
=> A1=A2 (2 góc tg ứng)
=> AC là p/giác tam giác ADB (1)
Mà tam giác ABD cân do AD= AB ( giả thiết) (2)
từ (1) và (2) => AC là trung trực tam giác ADB
=> AClà trung trực BD (đpcm)