K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

CHTT nha bạn ! 

8 tháng 1 2018

B C A D E F G H

a) Xét \(\Delta ADC\) có :

\(AF=FC\left(gt\right)\)

\(AG=CD\left(gt\right)\)

=> \(FG\) là đường trung bình của \(\Delta ADC\)

=> \(\left\{{}\begin{matrix}\text{FG//DC}\\FG=\dfrac{1}{2}DC\end{matrix}\right.\) (tính chất đường trung bình trong tam giác) (1)

Xét \(\Delta BDC\) có :

\(BE=EC\left(gt\right)\)

\(BH=HD\left(gt\right)\)

=> \(EH\) là đường trung bình của \(\Delta BDC\)

=> \(\left\{{}\begin{matrix}\text{EH//DC}\\EH=\dfrac{1}{2}DC\end{matrix}\right.\)(tính chất đường trung bình trong tam giác) (2)

Từ (1) và (2) => \(\left\{{}\begin{matrix}\text{FG//EH}\\FG=EH\end{matrix}\right.\)

=> Tứ giác EFGH là hình bình hành

Có thêm : \(AB\perp CD\left(gt\right)\)

Mà : \(\text{EH // CD (cmt)}\)

=> \(EH\perp AB\)

Xét \(\Delta ABC\) có :

\(BE=EC\left(gt\right)\)

\(AF=FC\left(gt\right)\)

=> EF là đường trung bình trong tam giác ABC

=> \(\text{EF // AB }\)

Ta thấy : \(\text{EF // AB }\left(cmt\right)\)

Mà : \(EH\perp AB\left(cmt\right)\)

=> \(EF\perp EH\)

=> Tứ giác EFGH là hình chữ nhật

=> \(EG=FH\) (2 đường chéo trong hình chữ nhật)

b) Để \(\text{ BC // AC }\) thì :

\(\Leftrightarrow\) Tứ giác ABCD là hình thang

8 tháng 1 2018

nguyen thi vangMashiro ShiinaAki TsukiNguyễn Huy ThắngNguyễn Huy TúAkai HarumaNgô Tấn ĐạtNam Nguyễnlê thị hương giangHà Nam Phan Đình

Sửa đề; EG=FH

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH//BD và EH=BD/2(1)

Xét ΔCBD có

F,G lần lượt là trung điểm của CG,CD

=>FG là đường trung bình

=>FG//BD và FG=BD/2(2)

Từ (1), (2) suy ra EH//FG và EH=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

=>EHGF là hình bình hành

mà EG=FH

nên EHGF là hình chữ nhật

=>EH vuông góc HG

mà EH//BD

nên BD vuông góc HG

mà HG//AC

nên AC vuông góc BD

30 tháng 10 2019

+ Xét tg BCD có EF là đường trung bình => EF//=CD/2

+ Xét tg ACD có GH là đường trung bình => GH//=CD/2

=> EF//=GH => EFGH là hình bình hành (1)

+ Xét tg ABC có HE là đường trung bình => HE=AB/2 mà EF=CD/2 và AB=CD => EF=HE (2)

Từ 91) và (2) => EFGH là hình thoi => EG vuông góc với FH (2 đường chéo của hình thoi vuông góc với nhau)

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M,...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0