\(\widehat{AOD}=70\)độ , AC =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

A B C D O 70 0 M N P Q

Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.

Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)

Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)

Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP

Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700 

Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)

Kết luận: ...

14 tháng 6 2019

Cho mik sửa tí: SABCD = SMNP = 1/2.MN.NP.Sin^MNP = 1/2.4.5,3.Sin700 \(\approx\)10,0 (cm2)

Vậy SABCD \(\approx\)10,0 cm2.

24 tháng 9 2021

Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.

Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)

Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)

Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP

Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700 

Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)

Kết luận: ...

15 tháng 6 2019

Sử dụng công thức (1): Với a, b, c là 3 cạnh đối diện của \(\widehat{A}\)\(\widehat{B}\)\(\widehat{C}\) của tam giác ABC thì \(S_{ABC}=\frac{1}{2}AB\)\(AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\Rightarrow S_{ABC}=\frac{BH.AC}{2}\)

Xét tam giác ABH vuông thì sin \(A=\frac{BH}{AB}\Rightarrow BH=\sin A.AC\)

Từ hai điều trên suy ra: \(S_{ABC}=\frac{AB.AC.\sin A}{2}\left(đpcm\right)\)

Trở lại bài toán:

Sử dụng công thức \(\sin\alpha=\sin\left(180-\alpha\right)\Rightarrow\sin AOD=\sin AOB=\sin BOC=\sin DOC\)

Áp dụng công thức (1):

\(S_{ABCD}=S_{AOB}=S_{AOD}=S_{DOC}=S_{BOC}=\frac{AO.OB.\sin AOB+AO.DO.\sin AOD+DO.CO.\sin DOC+BO.CO.\sin BOC}{2}\)

\(=\frac{\sin AOB\left(AO.OB+AO.OD+DO.OC+BO.OC\right)}{2}=\frac{\sin AOB\left(AO.BD+OC.BD\right)}{2}=\frac{\sin50^o.BD.AC}{2}\)

\(=\frac{20\sin50}{2}=10\sin50\)

26 tháng 12 2015

NA/BA = NC/BC 
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm) 
=> NC-NA=4 (cm) 
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2 
=> NA= BA*2 =6 (cm)

3 tháng 1 2022

tự làm đi