K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

Đáp án A

Gọi H là hình chiếu của O lên mặt phẳng (ABC) nên O H ⊥ A B C ⇒ O H ⊥ B C 1 .

Mặt khác O A ⊥ O B , O A ⊥ O C ⇒ O A ⊥ O B C ⇒ O A ⊥ B C 2 .

Từ (1),(2) suy ra B C ⊥ A O H ⇒ B C ⊥ A H . Chứng minh tương tự ta được A B ⊥ C H . Suy ra H là trực tâm của ΔABC.

Trong mặt phẳng (ABC) gọi E là giao điểm của AH và BC.

Ta có O H ⊥ A B C ⇒ O H ⊥ A E  tại H.

O A ⊥ A B C ⇒ O A ⊥ O E  tức là OH là đường cao của tam giác vuông OAE.

Mặt khác OE là đường cao của tam giác vuông OBC.

Do đó: 1 O H 2 = 1 O A 2 + 1 O E 2 = 1 O A 2 + 1 O B 2 + 1 O C 2 .

⇔ 1 d 2 = 1 a 2 + 1 b 2 + 1 c 2 ⇒ d = a b c b 2 c 2 + a 2 c 2 + a 2 b 2 .

23 tháng 10 2019

Đáp án A

Phương trình mặt phẳng (ABC) là x 1 + y 3 + z 2 = 1  mà D 1 ; 3 ; - 2 ⇒ D ∈ A B C . 

Và ta thấy rằng A C ¯ = - 1 ; 0 ; 2  và B D ¯ = - 1 ; 0 ; 2  suy ra ABCD là hình bình hành.

Vậy O.ABCD là một hình chóp có đáy là hình bình hành, do đó có 5 mặt phẳng thỏa mãn yêu cầu gồm:

Ÿ Mặt phẳng đi qua trung điểm của AC,BD và song song với (SAD) hoặc (SBC). 

Ÿ Mặt phẳng đi qua trung điểm cuả AD,BC đồng thời song song với (SAC) hoặc (SBD).

Ÿ Mặt phẳng đi qua trungđiểm của OA,OB,OC,OD.

1 tháng 5 2019

23 tháng 5 2017

Đáp án D

Gọi D, K lần lượt là trung điểm của AB, OC.

Từ D kẻ đường thẳng vuông góc với mặt phẳng   O A B và cắt mặt phẳng trung trực OC tại I x 1 ; y 1 ; z 1  suy ra I là tâm mặt cầu ngoại tiếp tứ diện OABC và z 1 = c 2  (do DOKI là hình chữ nhật).

Tương tự  D F = a 2 ⇒ x 1 = a 2 ; y 1 = b 2 ⇒ I a 2 ; b 2 ; c 2   .

Suy ra  x 1 + y 1 + z 1 = a + b + c 2 = 1 ⇒ I ∈ P : x + y + z − 1 = 0   .

Vậy khoảng cách từ điểm M đến (P) là d = 2015 3 .

11 tháng 1 2018

4 tháng 1 2017

Đáp án B

Ta có A B → = - 1 ; 2 ; 0 A D → = 1 ; - 2 ; 0 ⇒ A B → + A D → = 0 ⇒ A , B , D  thẳng hàng

Do đó, 5 điểm O, A, B, C, D tạo thành tứ diện như hình vẽ bên

Vậy có tất cả 5 mặt phẳng cần tìm đó là:

+ Mặt phẳng (OAC) đi qua 3 điểm O, A, C.

+ Bốn mặt phẳng là các mặt bên của tứ diện O.BCD đi qua 3 điểm trong 5 điểm O, A, B, C, D.

13 tháng 5 2019

Đáp án B

  A B → - 1 ; 2 ; 0 ,   A D → 1 ; - 2 ; 0 ,   A B → = - A D → ⇒ A , B , D thẳng hàng

Cứ 3 điểm không thẳng hàng cho ta một mặt phẳng

Số cách chọn 3 trong 5 điểm trên là  C 5 3 = 10

A,B,D thẳng hàng nên qua 3 điểm này không xác định được mặt phẳng

Số cách chọn 2 trong và điểm A,B,D và 1 điểm trong O và C là:  C 3 2 . C 2 1 = 6

Nếu chọn 2 trong 3 điểm A,B,D kết hợp cùng hai điểm còn lại sẽ ra một số mặt phẳng trùng nhau. Nên trường hợp này ta chỉ xác định được 2 mặt phẳng phân biệt

Vậy số mặt phẳng phân biệt đi qua 3 điểm O,A,B,C,D là: 10-1-6+2=5

1 tháng 11 2019

Chọn C.

4 tháng 2 2016

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

19 tháng 4 2018

Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)

\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)

Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp

\(\Rightarrow a-1⋮2\)

Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2

=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn

Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.

Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))

\(\Rightarrow\) $a + b + c + d$ là hợp số.