Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Giả sử cạnh tứ diện là a và G là trọng tâm tam giác BCD
Ta có A D ; D M ⏜ = A D M ⏜ và cos A D M ⏜ = G D A D = 3 3
A M ; D M ⏜ = A M G ⏜ , c o s A M G ⏜ = M G A M = 1 3
A B ; A M ⏜ = M A B ⏜ = 30 °
Sử dụng PP loại trừ
Đáp án C
Gọi P là trung điểm của AC.
Ta có: P N / / C D , M P / / A B ⇒ A B ; C D = M P ; P N
P N = M P = a 2 , M N = a 3 2 ⇒ cos M P N ⏜ = − 1 2 ⇒ M P N ⏜ = 120 °
⇒ A B ; C D ⏜ = 60 °
Đáp án A
Phương pháp: Sử dụng công thức
Cách giải:
Ta có
Xét tam giác vuông SHC có
Ta có:
Ta có:
Lại có
Đáp án A
Giả sử tứ diện đều cạnh a
Gọi H là tâm đường tròn ngoại tiếp Δ B C D ⇒ A H ⊥ B C D
Gọi E là trung điểm
A C ⇒ M E // A B ⇒ A B , D M = M E , M D
Ta có M E = a 2 , E D = M D = a 3 2
cos A B , D M = cos M E , M D = cos E M D ⏜
cos E M D ⏜ = M E 2 + M D 2 − E D 2 2 M E . M D = 3 6