K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

Đáp án B

Trong (ABC) kẻ MN // AC ( N ∈ BC)

Trong (ABD) kẻ MP // AD ( P ∈ BD)

⇒ (MNP)  là mặt phẳng cần tìm

Xét tam giác MNP có MN = MP =NP (= a - m )

⇒ tam giác MNP đều

Mà NP // CD và BG là trung tuyến tam giác BCD

⇒ BG cắt NP tại H là trung điểm NP

MH  là đường cao tam giác MNP

Ta có: PH = a - m 2 và MP = a – m. Áp dụng định lý pitago, ta có: MH = 3 2 a - m

Và NP = a – m

SMNP = MH . NP 2 = 3 4 a - m 2

NV
7 tháng 2 2021

Gọi N, P, Q lần lượt là trung điểm AC, AD, BD thì dễ dàng chứng minh hình thoi MNPQ là thiết diện (việc chứng minh thiết diện là hình thoi cũng vô cùng dễ dàng, 4 cái đường trung bình)

Mặt khác tứ diện đều nên các cặp cạnh đối vuông góc

\(\left\{{}\begin{matrix}AB\perp CD\\AB||MN\\CD||NP\end{matrix}\right.\) \(\Rightarrow MN\perp NP\)

\(\Rightarrow\) Thiết diện là hình vuông cạnh \(\dfrac{a}{2}\)

4 tháng 1 2019

Đáp án B

Trong (ABC), kẻ đường thẳng d đi qua M song song CI

d cắt AC tại H

Trong (SAB) kẻ đường thẳng x đi qua M và song song SI

X cắt SA tại J

⇒ (MHJ) là thiết diện cần tìm

Gọi tứ diện đều cạnh 2a ⇒ AI = a

Ta có AM = x và M J S I = A M A I  (MJ // SI theo cách dựng)

  A M A I = M H C I (MH // CI theo cách dựng)

J H S C = A H A C = A M A I

⇒ MJ = x a . 3 a   x 3

       MH = x a . 3 a  =  x 3

       JH = x a . 2 a = 2x

Chu vi thiết diện MHJ là: x 3 + x 3 + 2x = 2x ( 3  + 1 )

25 tháng 4 2019

18 tháng 12 2019

7 tháng 10 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + (α) // AC

⇒ Giao tuyến của (α) và (ABC) là đường thẳng song song với AC.

Mà M ∈ (ABC) ∩ (α).

⇒ (ABC) ∩ (α) = MN là đường thẳng qua M, song song với AC (N ∈ BC).

+ Tương tự (α) ∩ (ABD) = MQ là đường thẳng qua M song song với BD (Q ∈ AD).

+ (α) ∩ (BCD) = NP là đường thẳng qua N song song với BD (P ∈ CD).

+ (α) ∩ (ACD) = QP.

b)Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

Suy ra, tứ giác MNPQ có các cạnh đối song song với nhau nên tứ giác MNPQ là hình bình hành.

8 tháng 4 2019

Đáp án A

15 tháng 9 2017

Đáp án A

Trong mặt phẳng (BCD),  F G ∩ B D = H

H ∈ BD ⇒ H(ABD)

Trong (ABD),  E H ∩ A D = I

⇒ tứ giác EFGI là thiết diện cần tìm

11 tháng 6 2017

Chọn A