K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

Xét ΔICD có IK là đường trung tuyến

nên \(\overrightarrow{IK}=\dfrac{1}{2}\left(\overrightarrow{IC}+\overrightarrow{ID}\right)=\dfrac{1}{2}\cdot\overrightarrow{IC}+\dfrac{1}{2}\cdot\overrightarrow{ID}\)

=>I,K,C,D đồng phẳng

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) △ABC có M và N là trung điểm của AB, BC nên MN // AC (1)

△ACD có P và Q là trung điểm của CD, DA nên PQ // AC (2)

△SMN có I và J là trung điểm của SM, SN nên IJ // MN (3)

△SPQ có L và K là trung điểm của SQ, SP nên LK // PQ (4)

Từ (1)(2)(3)(4) suy ra IJ // LK. Do đó: I, J, K, L đồng phẳng. 

Ta có:  \(\dfrac{MN}{AC}=\dfrac{QP}{AC}=\dfrac{1}{2}\)

\(\dfrac{IJ}{MN}=\dfrac{LK}{PQ}=\dfrac{1}{2}\)

Từ (6)(7) suy ra: IJ = LK mà IJ // LK 

Do đó: IJKL là hình bình hành. 

b) Ta có: M, P lần lượt là trung điểm của AB, CD

Suy ra: MP // BC (1)

△SMP có: I, K là trung điểm của SM, SP 

Suy ra: IK // MP (2)

Từ (1)(2) suy ra: IK // BC.

c) Ta có: J là điểm chung của hai mặt phẳng (IJKL) và (SBC) 

Mà: IK // BC 

Từ J kẻ Jx sao cho Jx // BC. Do đó, Jx là giao tuyến của hai mặt phẳng (IJKL) và (SBC). 

13 tháng 12 2018

+ B đúng vì

+C đúng vì

22 tháng 2 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta thấy:

+ G là trọng tâm tam giác ABC ⇒ G ∈ BD ⇒ G ∈ BD

+ I ∈ DN (theo cách dựng hình).

+ J ∈ BP (theo cách dựng hình).

⇒ S, I, J, G ∈ mp(SPN)

Tương tự ⇒ S, I, J, G ∈ mp(SQM)

Vậy S, I, J, G là điểm chung của mp(SPN) và mp(SQM)

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta thấy:

+ S = PD ∩ EM

+ K ∈ DM

+ L ∈ PE

⇒ S, K, L ∈ (SPM)

Tương tự ⇒ S, K, L ∈ (SQN)

Vậy S, K, L là điểm chung của (SPM) và (SQN)

16 tháng 9 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Tìm giao tuyến của mp(IBC) và mp(KAD).

Ta có:

K ∈ BC ⇒ K ∈ (IBC) ⇒ K ∈ (IBC) ∩ (KAD)

I ∈ AD ⇒ I ∈ (KAD) ⇒ I ∈ (IBC) ∩ (KAD)

Vậy KI = (IBC) ∩ (KAD)

b) Trong mp(ABD) gọi BI ∩ DM = P

⇒ P ∈ (IBC) ∩ (DMN)

Trong mặt phẳng (ACD) gọi CI ∩ DN = Q

⇒ Q ∈ (IBC) ∩ (DMN)

Vậy (IBC) ∩ (DMN) = PQ.

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥...
Đọc tiếp

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.

a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.

b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).

c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.

d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.

e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.

f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.

1
27 tháng 3 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.

Như vậy: ∠(ACB) = ∠(ADB) = 1v.

a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC

BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)

Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)

Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.

Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))

AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)

Lý luận tương tự, ta có:

BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))

AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)

Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).

b) Ta có ngay O’ là trung điểm BJ

Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ

Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)

c) Ta có (SCD) ∩ (ABCD) = CD.

Gọi M = JK ∩ CD

SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)

SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)

Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.

Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.

d) ΔAIB vuông tại I nên OA = OB = OI

ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).

ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).

Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.

e) Theo chứng minh câu c.

f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).

Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn ( C 1 ) đường kính AB nằm trong mặt phẳng (B, d).

Tương tự, tập hợp J là đường tròn ( C 2 ) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).

2 tháng 2 2017

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Ta có:

PQ = (ABC) ∩ (PQRS)

RS = (PQRS) ∩ (ACD)

AC = (ABC) ∩ (ACD)

Vậy hoặc PQ, RS, AC đồng qui hoặc song song.

b) PS =(ABD) ∩ (PQRS)

RQ = (BCD) ∩ (PQRS)

BD = (ABD) ∩ (CBD)

Vậy PS, RQ, BD đồng quy hoặc song song.

29 tháng 4 2019

17 tháng 6 2017

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

⇒ NP và CD không song song với nhau.

Gọi giao điểm NP và CD là I.

I ∈ NP ⇒ I ∈ (MNP).

Mà I ∈ CD

Vậy I ∈ CD ∩ (MNP)

b) Trong mặt phẳng (ACD) thì AD và MI cắt nhau tại điểm J:

J ∈ AD ⇒ J ∈ (ACD)

J ∈ MI ⇒ J ∈ (MNP)

Vậy J là một điểm chung của hai mặt phẳng (ACD) và (MNP).

Ta đã có M là một điểm chung của hai mặt phẳng (ACD) và (MNP).

 

Vậy MJ = (ACD) ∩ (MNP).