K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có:

\(\left\{{}\begin{matrix}M\in\left(MCD\right)\\M\in AB\subset\left(NAB\right)\end{matrix}\right.\)\(\Rightarrow M\in\left(MCD\right)\cap\left(NAB\right)\)

\(\left\{{}\begin{matrix}N\in CD\subset\left(MCD\right)\\N\in\left(NAB\right)\end{matrix}\right.\)\(\Rightarrow N\in\left(MCD\right)\cap\left(NAB\right)\)

\(\Rightarrow MN=\left(MCD\right)\cap\left(NAB\right)\)

b) Trong mp(BCD), gọi \(P=NG\cap BD\)

     Trong mp(BAD), gọi \(Q=PM\cap AD\)

Ta có:

\(\left\{{}\begin{matrix}N\in\left(GMN\right)\\N\in CD\subset\left(ACD\right)\end{matrix}\right.\)\(\Rightarrow N\in\left(GMN\right)\cap\left(ACD\right)\)

Ta có:

\(\left\{{}\begin{matrix}Q\in MP\subset\left(GMN\right)\\Q\in AD\subset\left(ACD\right)\end{matrix}\right.\)\(\Rightarrow Q\in\left(GMN\right)\cap\left(ACD\right)\)

\(\Rightarrow NQ=\left(GMN\right)\cap\left(ACD\right)\)

11 tháng 11 2018

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\(\left. \begin{array}{l}\left( {ABD} \right) \bot \left( {BCD} \right)\\\left( {ABD} \right) \cap \left( {BCD} \right) = BD\\C{\rm{D}} \subset \left( {BCD} \right)\\C{\rm{D}} \bot B{\rm{D}}\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {ABD} \right) \Rightarrow C{\rm{D}} \bot A{\rm{D}}\)

Vậy tam giác \(ACD\) vuông tại \(D\).

NV
15 tháng 11 2019

a/ MN chính là giao tuyến đó luôn (N thuộc CD nên N thuộc (MCD), và hiển nhiên N thuộc (NAB), do đó N là 1 điểm chung của (MCD) và (NAB). Tương tự với điểm M)

b/ Trong mặt phẳng (BCD), nối GN kéo dài cắt BC tại E

Trong mặt phẳng (ABC), nối EM kéo dài cắt AC tại F

\(\Rightarrow NF\) là giao tuyến (GMN) và (ACD)

20 tháng 8 2023

a) Góc giữa đường thẳng AB và mặt phẳng $(BCD)$ là góc giữa đường thẳng AB và một đường thẳng nằm trên mặt phẳng $(BCD)$ và // $BC$ hoặc $CD$. Vì ABCD là tứ diện đều, nên các cạnh của nó đều song song và bằng nhau.

=> AB//CD

Vậy góc giữa đường thẳng AB và mặt phẳng (BCD) là góc vuông.

b) Góc phẳng nhị diện [A,CD,B] là góc giữa mặt phẳng $(ACD)$ và mặt phẳng $(BCD)$. Vì $ABCD$ là tứ diện đều, nên mặt phẳng `(ACD)` ⊥ mặt phẳng $(BCD)$.

Do đó, góc phẳng nhị diện$ [A,CD,B] $là góc vuông.

Tương tự, góc phẳng nhị diện $[A,CD,E] $cũng là góc vuông.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}AB \bot \left( {BC{\rm{D}}} \right) \Rightarrow AB \bot C{\rm{D}}\\BE \bot CE\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {ABE} \right)\)

Lại có \(C{\rm{D}} \subset \left( {A{\rm{D}}C} \right)\)

Vậy \(\left( {ADC} \right) \bot \left( {ABE} \right)\)

\(\begin{array}{l}\left. \begin{array}{l}AB \bot \left( {BC{\rm{D}}} \right) \Rightarrow AB \bot DF\\DF \bot BC\end{array} \right\} \Rightarrow DF \bot \left( {ABC} \right)\\\left. \begin{array}{l} \Rightarrow DF \bot AC\\DK \bot AC\end{array} \right\} \Rightarrow AC \bot \left( {DFK} \right)\end{array}\)

Lại có \(AC \subset \left( {A{\rm{D}}C} \right)\)

Vậy \(\left( {ADC} \right) \bot \left( {DFK} \right)\)

b) Ta có:

\(\left. \begin{array}{l}\left( {ADC} \right) \bot \left( {ABE} \right)\\\left( {ADC} \right) \bot \left( {DFK} \right)\\\left( {ABE} \right) \cap \left( {DFK} \right) = OH\end{array} \right\} \Rightarrow OH \bot \left( {ADC} \right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\\A{\rm{B}}\parallel C{\rm{D}}\\AB \subset \left( {SAB} \right)\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(AB\) và \(C{\rm{D}}\).

Chọn A.