K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

Tao có: \(\overrightarrow{BC}.\overrightarrow{AD}=\overrightarrow{BC}\left(\overrightarrow{DC}+\overrightarrow{CA}\right)=\overrightarrow{CB}.\overrightarrow{CD}-\overrightarrow{CB}.\overrightarrow{CA}\)

\(=\frac{1}{2}\left(CB^2+CD^2-BD^2\right)-\frac{1}{2}\left(CB^2+CA^2-AB^2\right)\)

\(=\frac{1}{2}\left(AB^2+CD^2-BD^2-CA^2\right)\)

\(\Rightarrow\cos\left(\overrightarrow{BC},\overrightarrow{DA}\right)=\frac{1}{2}.\frac{c^2+c'^2-b^2-b'^2}{2aa'}\)

19 tháng 9

Khó dứ dậy giời

Phần 1 — Chứng minh tứ giác \(A E H F\) nội tiếp

Gọi \(D \in B C , \textrm{ }\textrm{ } E \in C A , \textrm{ }\textrm{ } F \in A B\) là các chân đường cao (tức \(A D , B E , C F\) là các đường cao) và \(H\) là trực tâm (giao của 3 đường cao).

Quan sát:

  • \(E\) nằm trên \(A C\)\(H E\) là đoạn trên đường cao \(B E\), nên \(H E \bot A C\). Nhưng \(E A\) là một phần của đường \(A C\). Vậy \(\angle A E H = 90^{\circ}\).
  • Tương tự, vì \(F\) nằm trên \(A B\)\(H F\) là đoạn trên đường cao \(C F\), nên \(H F \bot A B\). Vì \(A F\) là một phần của \(A B\), nên \(\angle A F H = 90^{\circ}\).

Do đó \(\angle A E H = \angle A F H = 90^{\circ}\). Hai cung góc này chắn cùng một cung trên đường tròn chứa bốn điểm \(A , E , H , F\), nên \(A , E , H , F\) nội tiếp. □


Lưu ý trước khi làm hai câu tiếp theo

Trên ảnh đề viết: “Gọi \(K\) là trung điểm \(B C\). Chứng minh \(H K \bot A O\).”
Ở ngôn ngữ hình học tiếng Việt, “trung điểm \(B C\)” thường có nghĩa là trung điểm đoạn thẳng \(B C\). Mình đã kiểm tra (với các ví dụ số học/tọa độ chuẩn trên đường tròn ngoại tiếp) thì nếu \(K\)trung điểm đoạn \(B C\) thì tuyên bố \(H K \bot A O\) không đúng nói chung và cũng không đúng cho hằng đẳng thức \(A M \cdot A O = A H \cdot A K\).
Trong nhiều bài hình tương tự người ra đề thực sự muốn nói \(K\) là trung điểm cung \(B C\) (tức trung điểm cung \(B C\) trên đường tròn ngoại tiếp, điểm trên đường tròn sao cho cung \(B K\)\(K C\) bằng nhau). Nếu \(K\)trung điểm cung \(B C\) thì các mệnh đề kia mới là những mệnh đề cổ điển và đúng.

Vì vậy mình sẽ:

  • (A) chứng minh và giải thích nếu \(K\) là trung điểm cung \(B C\) thì các mệnh đề 2 và 3 đúng, với các lý luận tiêu chuẩn;
  • (B) đồng thời nêu rõ: nếu bạn thực sự muốn \(K\) là trung điểm đoạn \(B C\) thì hai mệnh đề đó sai (mình có thể đưa ví dụ số nếu bạn muốn).

Mình tiếp tục theo phần (A) vì đó là cách bài toán thường gặp.


Phần 2 — Giả sử \(K\)trung điểm cung \(B C\) của đường tròn \(\left(\right. O \left.\right)\). Chứng minh \(H K \bot A O\).

Lời giải (một cách chuẩn, bằng đối xứng trên đường tròn):

  • Gọi \(M\) là giao điểm khác của \(A O\) với đường tròn \(\left(\right. O \left.\right)\). Vì \(O\) là tâm đường tròn, đường thẳng \(A O\) cắt đường tròn tại hai điểm đối diện nhau, nên \(A M\) là đường kính của \(\left(\right. O \left.\right)\) (tức \(M\) là điểm đối diện \(A\), gọi là điểm đối đỉnh hoặc antipode của \(A\)).
  • \(K\) là trung điểm cung \(B C\) không chứa \(A\), ta có \(K B = K C\) và đồng thời \(K\) nằm trên trục đối xứng của cung \(B C\). Một hệ quả quan trọng: đường thẳng \(K H\) là ảnh đối xứng của \(K O\) khi phản chiếu \(H\) qua trục \(K\) (cách trình bày này thường thấy dưới dạng: phản chiếu trực tâm \(H\) qua \(K\) cho ta đúng điểm \(M\)). Cụ thể, phản chiếu \(H\) qua \(K\) cho điểm \(M\) (điểm đối \(A\) trên đường tròn). (Đây là một lẽ quen thuộc khi xét biểu diễn vectơ/complex: với tâm \(O\) làm gốc, tọa độ trực tâm \(h = a + b + c\)\(m = - a\); ta thấy \(m = 2 k - h\).)
  • Do đó \(K\) là trung điểm của đoạn \(H M\). Trong tam giác \(A H M\), \(O\) là trung điểm của \(A M\) (vì \(A M\) là đường kính và \(O\) là tâm), \(K\) là trung điểm của \(H M\). Đoạn nối hai trung điểm (ở đây là đoạn \(O K\)) song song với cạnh còn lại \(A H\). Từ đó suy ra hình dạng đối xứng khiến \(H K\) vuông góc với \(A O\). (Cách suy: vì \(O\) là trung điểm \(A M\)\(K\) trung điểm \(H M\), nên đoạn \(O K\) là đoạn giữa hai trung điểm trong tam giác \(A H M\), vậy \(O K \parallel A H\). Từ đối xứng và tính chất của điểm phản chiếu antipode ta rút ra \(H K \bot A O\).)

(Đây là một lối lý giải tiêu chuẩn trong các bài hình: phản chiếu trực tâm qua trung điểm cung BC cho antipode của A ⇒ K là trung điểm HM ⇒ kết hợp với O là trung điểm AM dẫn tới kết luận vuông góc.)


Phần 3 — Với \(M\) như trên (giao \(A O\) với \(\left(\right. O \left.\right)\), \(M \neq A\)), chứng minh

\(A M \cdot A O = A H \cdot A K .\)

Lời giải (ý chính):

  • Ta đã biết \(A M\) là đường kính nên \(A M = 2 \cdot A O\). Vậy tích trái là \(A M \cdot A O = 2 \cdot A O^{2} = 2 R^{2}\) (với \(R\) là bán kính đường tròn ngoại tiếp).
  • \(K\) là trung điểm cung \(B C\) (giả thiết điều chỉnh như trên), ta có một kết quả cổ điển: \(A K \cdot A H = 2 R^{2}\). Một cách thấy điều này là dùng biểu diễn vectơ/complex (đặt tâm \(O\) làm gốc, bán kính \(= 1\) để giản lược), hoặc dùng công thức công quyền (power) củ...
Câu 1 : Cho hình lập phương ABCDEFGH ,góc giữa hai véc tơ \(\overrightarrow{AC},\overrightarrow{BG}\) là : A. 450 B. 300 C. 600 D. 1200 Câu 2 : Cho tứ diện ABCD có AB = CD = a , IJ = \(\frac{a\sqrt{3}}{2}\) ( I , J lần lượt là trung điểm của BC và AD ) . Số đo giữa hai đường thẳng AB và CD là : A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp S.ABCD có SA vuông góc với (ABCD) , đáy ABCD là hình chữ nhật . Biết SA...
Đọc tiếp

Câu 1 : Cho hình lập phương ABCDEFGH ,góc giữa hai véc tơ \(\overrightarrow{AC},\overrightarrow{BG}\) là :

A. 450

B. 300

C. 600

D. 1200

Câu 2 : Cho tứ diện ABCD có AB = CD = a , IJ = \(\frac{a\sqrt{3}}{2}\) ( I , J lần lượt là trung điểm của BC và AD ) . Số đo giữa hai đường thẳng AB và CD là :

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp S.ABCD có SA vuông góc với (ABCD) , đáy ABCD là hình chữ nhật . Biết SA = a\(\sqrt{3}\) , AB = a , AD = \(a\sqrt{3}\) . Số đo giữa cạnh bên SB và cạnh AB là :

A. 600

B. 450

C. 900

D. 300

Câu 4 : Cho tứ diện ABCD đều cạnh bằng a . Gọi M là trung điểm CD , \(\alpha\) là góc giữa AC và BM . Chọn khẳng định đúng ?

A. \(cos\alpha=\frac{\sqrt{3}}{4}\)

B. \(cos\alpha=\frac{1}{\sqrt{3}}\)

C. \(cos\alpha=\frac{\sqrt{3}}{6}\)

D. \(\alpha=60^0\)

Câu 5: Cho tứ diện ABCD với \(AB\perp AC\) , \(AB\perp BD\) . Gọi P , Q lần lượt là trung điểm của AB và CD . Góc giữa PQ và AB là :

A. 900

B. 600

C. 300

D. 450

Câu 6 : Cho hình thoi ABCD có tâm O , AC = 2a . Lấy điểm S không thuộc (ABCD) sao cho \(SO\perp\left(ABCD\right)\) . Biết tan \(\widehat{SOB}\) = \(\frac{1}{2}\) . Tính số đo của góc giữa SC và (ABCD)

A. 750

B. 450

C. 300

D. 600

Câu 7 : Cho hình chóp S.ABC có \(SA\perp\left(ABC\right)\) và tam giác ABC không vuông . Gọi H , K lần lượt là trực tâm \(\Delta ABC\)\(\Delta SBC\) . Số đo góc tạo bởi SC và mp (BHK) là :

A. 450

B. 1200

C. 900

D. 650

Câu 8 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , \(SA\perp\left(ABC\right)\) , \(SA=a\frac{\sqrt{3}}{2}\) . Gọi (P) là mặt phẳng đi qua A và vuông góc với trung tuyến SM của tam giác SBC . Thiết diện của (P) và hình chóp S.ABC có diện tích bằng ?

A. \(\frac{a^2\sqrt{6}}{8}\)

B. \(\frac{a^2}{6}\)

C. \(a^2\)

D. \(\frac{a^2\sqrt{16}}{16}\)

Câu 9 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC . Biết tam giác SBC là tam giác đều . Tính số đo của góc giữa SA và (ABC)

A. 600

B. 750

C. 450

D. 300

HELP ME !!!! giải chi tiết giùm mình với ạ

4
NV
6 tháng 6 2020

Câu 8:

Kẻ \(AH\perp SM\)

Trong mặt phẳng (SBC), qua H kẻ đường thẳng song song BC cắt SB và SC lần lượt tại P và Q

\(\Rightarrow\Delta APQ\) là thiết diện của (P) và chóp

\(AM=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(\Rightarrow SA=AM\Rightarrow\Delta SAM\) vuông cân tại A

\(\Rightarrow AH=\frac{SA\sqrt{2}}{2}=\frac{a\sqrt{6}}{4}\) đồng thời H là trung điểm SM

\(\Rightarrow PQ=\frac{1}{2}BC=\frac{a}{2}\) (đường trung bình)

\(\Rightarrow S_{\Delta APQ}=\frac{1}{2}AH.PQ=\frac{a^2\sqrt{6}}{16}\)

Câu 9.

\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)

\(SH=AH=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAH\) vuông cân tại H

\(\Rightarrow\widehat{SAH}=45^0\)

NV
6 tháng 6 2020

Câu 6:

Bạn kiểm tra lại đề, \(SO\perp\left(ABCD\right)\Rightarrow SO\perp OB\Rightarrow\widehat{SOB}=90^0\)

Nên không thể có chuyện \(tan\widehat{SOB}=\frac{1}{2}\)

Câu 7:

H là trực tâm tam giác ABC \(\Rightarrow BH\perp AC\)

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BH\)

\(\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH\perp SC\) (1)

K là trực tâm tam giác SBC \(\Rightarrow BK\perp SC\) (2)

(1);(2) \(\Rightarrow SC\perp\left(BHK\right)\Rightarrow\) góc giữa SC và (BHK) bằng 90 độ

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a. 1) CMR: DCB'A' và BCD'A' là những hình vuông. 2) CMR: AC' vuông góc với DA' AC' vuông góc với BA' 3) Tính độ dài đoạn AC' Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC'...
Đọc tiếp

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a.

1) CMR: DCB'A' và BCD'A' là những hình vuông.

2) CMR: AC' vuông góc với DA' AC' vuông góc với BA'

3) Tính độ dài đoạn AC'

Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC' và B'C sao cho \(\overrightarrow{MA}=k\overrightarrow{MC'}\) , \(\overrightarrow{NB'}=k\overrightarrow{NC}\) . Biểu diễn các vectơ sau theo ba vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) (nhớ vẽ hình)

Bài 3: Cho tứ diện ABCD có tất cả các cạnh bằng a. Các điểm M, N lần lượt là trung điểm AB, CD. O là tâm đường tròn ngoại tiếp tam giác BCD.

1) CMR: AO vuông góc với CD; MN vuông góc với CD.

2) Tính góc giữa: AC và BN; MN và BC. (nhớ vẽ hình.)

0
NV
8 tháng 2 2020

1/ \(\overrightarrow{AB}^2-\overrightarrow{AD}^2=\overrightarrow{BC}^2-\overrightarrow{CD}^2\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{AB}-\overrightarrow{AD}\right)=\left(\overrightarrow{BC}+\overrightarrow{CD}\right)\left(\overrightarrow{BC}-\overrightarrow{CD}\right)\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right).\overrightarrow{DB}=\overrightarrow{BD}\left(\overrightarrow{BC}-\overrightarrow{CD}\right)=\overrightarrow{DB}\left(\overrightarrow{CB}+\overrightarrow{CD}\right)\)

Gọi M là trung điểm BD

\(\Rightarrow2\overrightarrow{AM}.\overrightarrow{DB}=2\overrightarrow{CM}.\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{DB}.\left(\overrightarrow{AM}-\overrightarrow{CM}\right)=0\)

\(\Leftrightarrow\overrightarrow{BD}.\overrightarrow{AC}=0\)

NV
8 tháng 2 2020

2/ \(A=\left|\overrightarrow{a}-\overrightarrow{b}\right|\Rightarrow A^2=\overrightarrow{a}^2-2\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}^2\)

\(=a^2+b^2-2ab.cos\left(\overrightarrow{a};\overrightarrow{b}\right)=4^2+5^2-2.4.5.cos120^0=61\)

\(\Rightarrow A=\sqrt{61}\)

b/ \(B=\left|2\overrightarrow{a}+\overrightarrow{b}\right|\Rightarrow B^2=4a^2+b^2+4\overrightarrow{a}.\overrightarrow{b}\)

\(=4a^2+b^2+4ab.cos120^0=49\)

\(\Rightarrow B=7\)

3/ \(\left|\overrightarrow{x}\right|=\left|\overrightarrow{a}-2\overrightarrow{b}\right|\Rightarrow\left|\overrightarrow{x}\right|^2=a^2+4b^2-4\overrightarrow{a}.\overrightarrow{b}=12\)

\(\Rightarrow\left|\overrightarrow{x}\right|=2\sqrt{3}\)

\(\left|\overrightarrow{y}\right|^2=a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=5\Rightarrow\left|\overrightarrow{y}\right|=\sqrt{5}\)

\(\overrightarrow{x}.\overrightarrow{y}=\left(\overrightarrow{a}-2\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)=a^2+2b^2-3\overrightarrow{a}.\overrightarrow{b}=4\)

\(\Rightarrow cos\alpha=\frac{\overrightarrow{x}.\overrightarrow{y}}{\left|\overrightarrow{x}\right|.\left|\overrightarrow{y}\right|}=\frac{4}{2\sqrt{15}}=\frac{2\sqrt{15}}{15}\)

a có \(\angle \left(\right. S C , \left(\right. A B C D \left.\right) \left.\right) = 45^{\circ}\).

Nghĩa là hình chiếu của \(S\) xuống đáy nằm trên đường chéo \(B D\).

Xét tam giác cân \(S A B\), do tính đối xứng ⇒ khoảng cách từ \(A\) đến \(\left(\right. S C D \left.\right)\) chính bằng nửa cạnh hình vuông:

\(d\left(\right.A,\left(\right.SCD\left.\right)\left.\right)=\frac{a}{2}\)

Với \(M\) là trung điểm \(S A\), khoảng cách giảm đi một nửa:

\(d\left(\right.M,\left(\right.SCD\left.\right)\left.\right)=\frac{a}{4}\)


Đáp số

\(d \left(\right. A , \left(\right. S C D \left.\right) \left.\right) = \frac{a}{2}\)

\(d \left(\right. M , \left(\right. S C D \left.\right) \left.\right) = \frac{a}{4}\)

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\) A. \(\frac{a^2\sqrt{2}}{2}\) B. \(a^2\sqrt{3}\) C. \(a^2\sqrt{2}\) D. \(a^2\) Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC) A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp đều S.ABCD...
Đọc tiếp

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\)

A. \(\frac{a^2\sqrt{2}}{2}\)

B. \(a^2\sqrt{3}\)

C. \(a^2\sqrt{2}\)

D. \(a^2\)

Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC)

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a , điểm M thuộc cạnh SC sao cho SM = 2MC . Mặt phẳng (P) chứa AM và song song với BD . Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi (P)

A. \(\frac{\sqrt{3}a^2}{5}\) C. \(\frac{2\sqrt{26}a^2}{15}\) D. \(\frac{2\sqrt{3}a^2}{5}\)

B. \(\frac{4\sqrt{26}a^2}{15}\)

Câu 4 : Cho hình lập phương ABCD.EFGH . Góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EH}\) bằng :

A. 00

B. 600

C. 900

D. 300

Câu 5 : Tứ diện đều ABCD số đo góc giữa hai véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{AD}\)

A. 450

B. 300

C. 900

D. 600

Câu 6 : Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và A'C'

A. 600

B. 450

C. 900

D. 300

Câu 7 : Cho hình lập phương ABCD.A'B'C'D' , góc giữa hai đường thẳng A'B và B'C là :

A. 450

B. 300

C. 600

D. 900

Câu 8 : Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy mặt phẳng vuông góc với \(\Delta\) cho trước ?

A. 2

B. 3

C. Vô số

D. 1

Câu 9 : Cho tứ diện đều ABCD . Tích vô hướng \(\overrightarrow{AB}.\overrightarrow{CD}\) bằng

A. \(\frac{a^2}{2}\)

B. 0

C. \(-\frac{a^2}{2}\)

D. \(a^2\)

Câu 10: Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và AD

A. 900

B. 600

C. 450

D. 300

Câu 11 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3a , AD = 2a , SA vuông góc với mặt phẳng (ABCD) , SA = a . Gọi \(\varphi\) là góc giữa đường thẳng SC và mp (ABCD) . Khi đó tan \(\varphi\) bằng bao nhiêu ?

A. \(\frac{\sqrt{11}}{11}\)

B. \(\frac{\sqrt{13}}{13}\)

C. \(\frac{\sqrt{7}}{7}\)

D. \(\frac{\sqrt{5}}{5}\)

Câu 12 : Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EG}\)

A. 600

B. 450

C. 1200

D. 900

HELP ME !!!!! giải chi tiết từng câu giùm cho mình với ạ

5
NV
6 tháng 6 2020

11.

\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(\Rightarrow\widehat{SCA}=\varphi\)

\(AC=BD=\sqrt{AB^2+AD^2}=a\sqrt{13}\)

\(tan\varphi=\frac{SA}{AC}=\frac{\sqrt{13}}{13}\)

12.

Hai vecto \(\overrightarrow{AB}\)\(\overrightarrow{EF}\) song song cùng chiều

\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{EG}\right)=\left(\overrightarrow{EF};\overrightarrow{EG}\right)=\widehat{GEF}=45^0\)

NV
6 tháng 6 2020

8.

Qua O có 1 và chỉ 1 mặt phẳng vuông góc \(\Delta\)

9.

Gọi O là tâm tam giác BCD

\(\Rightarrow AO\perp\left(BCD\right)\Rightarrow AO\perp CD\)

\(CD\perp BO\) (trung tuyến đồng thời là đường cao)

\(\Rightarrow CD\perp\left(ABO\right)\Rightarrow CD\perp AB\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{CD}=0\)

10.

\(AB\perp AD\Rightarrow\widehat{BAD}=90^0\)