K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

Đáp án B

Thiết diện của hình chóp khi cắt bởi mp (IJK)  là tam giác IJK.

15 tháng 9 2017

Đáp án A

Trong mặt phẳng (BCD),  F G ∩ B D = H

H ∈ BD ⇒ H(ABD)

Trong (ABD),  E H ∩ A D = I

⇒ tứ giác EFGI là thiết diện cần tìm

20 tháng 8 2017

Đáp án C

Trong (ABC) có EF ∩ AC =  I

⇒ I ∈ (ACD)

Xét (ACD) có: IG ∩ AD =  H

⇒ EFGH là thiết diện cần tìm

26 tháng 5 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (α) ∩ (ABC) = MN và MN // AB

Ta có N ∈ (BCD) và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên ⇒ (α) ∩ (BCD) = NP và NP // CD

Ta có P ∈ (ABD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB

Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD

Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.

b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.

Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.

Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.

Vì MNPQ là hình bình hành nên ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

EF // MN ⇒ EF // AB

Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J

⇒ I, O, J thẳng hàng

⇒ O ∈ IJ cố định.

 

Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .

Vậy tập hợp các điểm O là đoạn IJ.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

7 tháng 10 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + (α) // AC

⇒ Giao tuyến của (α) và (ABC) là đường thẳng song song với AC.

Mà M ∈ (ABC) ∩ (α).

⇒ (ABC) ∩ (α) = MN là đường thẳng qua M, song song với AC (N ∈ BC).

+ Tương tự (α) ∩ (ABD) = MQ là đường thẳng qua M song song với BD (Q ∈ AD).

+ (α) ∩ (BCD) = NP là đường thẳng qua N song song với BD (P ∈ CD).

+ (α) ∩ (ACD) = QP.

b)Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

Suy ra, tứ giác MNPQ có các cạnh đối song song với nhau nên tứ giác MNPQ là hình bình hành.

20 tháng 11 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Chú ý rằng I, J, K thẳng hàng vì chúng cùng thuộc giao tuyến của hai mặt phẳng (CBD) và (C'B'D')

b) 4. Vì 4 điểm không đồng phẳng sẽ tạo nên 1 tứ diện => có 4 mặt

10 tháng 5 2018

Đáp án D

Trong tam giác BCD có: P là trọng tâm, N là trung điểm BC . Suy ra N , P , D thẳng hàng.

Vậy thiết diện là tam giác MND .

Xét tam giác MND , ta có 

Do đó tam giác MND cân tại D .

Gọi H là trung điểm MN suy ra DH  ⊥ MN

Diện tích tam giác