K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

a) S, I, J, G là điểm chunng của (SAE) và (SBD)

b) S, K, L là điểm chung của (SAB) và (SDE)

24 tháng 2 2023

b

NV
26 tháng 9 2020

a/ Trong mặt phẳng (BCD), nối BO kéo dài cắt CD tại E

Trong mặt phẳng (ACD), nối AE cắt MN tại F

\(\Rightarrow F=MN\cap\left(ABO\right)\)

b/ Trong mặt phẳng (ABE), nối BF cắt AO tại P

\(\Rightarrow P=AO\cap\left(MNB\right)\)

7 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Nhận xét:

Do giả thiết cho IJ không song song với CD và chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K = IJ ∩ CD.

Ta có: M là điểm chung thứ nhất của (ACD) và (IJM);

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (MIJ) ∩ (ACD) = MK

b) Với L = JN ∩ AB ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P = JL ∩ AD, Q = PM ∩ AC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ = (ABC) ∩ (MNJ).

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

9 tháng 11 2023

a) Ta có SM = MN = NA và G là trọng tâm của tam giác ABC. Khi đó, ta có:
SG = 2GM (vì G là trọng tâm)
SG = 2GN (vì G là trọng tâm)
Vậy GM = GN
Do đó, ta có tam giác SMN là tam giác đều.
Vì SM = MN = NA, nên tam giác SNA cũng là tam giác đều.
Từ đó, ta có góc SNA = 60°.
Mà góc SNA = góc SNB + góc BNA = góc SNB + góc BNC.
Vậy góc SNB + góc BNC = 60°.
Nhưng góc SNB + góc BNC = góc SBC.
Vậy góc SBC = 60°.
Do đó, GM // (SBC).

b) Gọi D là điểm đối xứng của A qua G.
Ta có GD = GA (vì D là điểm đối xứng của A qua G)
Và GM = GN (vì G là trọng tâm)
Vậy tam giác GDM và tam giác GAN là tam giác đồng dạng (cạnh bằng nhau và góc bằng nhau).
Từ đó, ta có góc GDM = góc GAN.
Nhưng góc GDM = góc MCD và góc GAN = góc NGB.
Vậy góc MCD = góc NGB.
Do đó, (MCD) // (NBG).

c) Gọi H = DM ∩ (SBC).
Ta cần chứng minh H là trọng tâm của tam giác SBC.
Vì G là trọng tâm của tam giác ABC, nên AG = 2GM.
Và GD = GA (vì D là điểm đối xứng của A qua G).
Từ đó, ta có AD = 2GD.
Vậy D là trọng tâm của tam giác AGD.
Do đó, DH là đường cao của tam giác AGD.
Vậy DH cắt AG tại I sao cho AI = 2IG.
Mà AI = 2IG nên I là trọng tâm của tam giác AGD.
Vậy I nằm trên đường thẳng DM.
Từ đó, ta có H = DM ∩ (SBC) là trọng tâm của tam giác SBC.
Vậy H là trọng tâm của tam giác SBC.

NV
15 tháng 8 2020

a/ Trong mp (BCD), nối BP cắt CD tại E

Trong mp (ABP), nối MP cắt AE kéo dài tại F (trong trường hợp MP không song song AE)

\(\Rightarrow F=MP\cap\left(ACD\right)\)

b/Nếu MN cắt BC, kéo dài MN cắt BC tại G

Nối GP cắt BD tại H

Trong mặt phẳng (ABD), nối MH cắt AD tại K (trong trường howph MH ko song song AD)

\(\Rightarrow K=AD\cap\left(MNP\right)\)

c/\(H=BD\cap\left(MNP\right)\)