Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔSBC có SH/SB=SK/SC=1/2
nên HK//BC
mà \(BC\subset\left(ABC\right)\); HK không nằm trong mp(ABC)
nên HK//(ABC)
b: \(K\in SC\subset\left(SBC\right);K\in AK\)
Do đó: \(K\in AK\cap\left(SBC\right)\)
mà \(A\notin\left(SBC\right)\)
nên \(K=AK\cap\left(SBC\right)\)
c: \(A\in\left(SAB\right);H\in SB\subset\left(SAB\right)\)
Do đó: \(AH\subset\left(SAB\right)\)
a: Xét ΔSAC có M,N lần lượt là trung điểm của SA,SC
=>MN là đường trung bình của ΔSAC
=>MN//AC
mà MN không thuộc mp(ABCD) và \(AC\subset\left(ABCD\right)\)
nên MN//(ABCD)
b: \(A\in AN;A\in\left(ABD\right)\)
=>\(A\in AN\cap\left(ABD\right)\)
mà \(N\in SC\) không thuộc mp(ABD)
nên \(A=AN\cap\left(ABD\right)\)
c: \(S\in\left(SAC\right);E\in AC\subset\left(SAC\right)\)
Do đó: \(SE\subset\left(SAC\right)\)
a: Xét ΔCBD có M,N lần lượt là trung điểm của CD,CB
=>MN là đường trung bình của ΔCBD
=>MN//BD
mà \(BD\subset\left(ABD\right)\) và MN không nằm trong mp(ABD)
nên MN//(ABD)
b: Chọn mp(ACD) có chứa AM
\(CD\subset\left(ACD\right);CD\subset\left(BCD\right)\)
Do đó: \(\left(ACD\right)\cap\left(BCD\right)=CD\)
Ta có: \(M=AM\cap CD\)
=>M là giao điểm của AM với mp(BCD)
=>AM cắt mp(BCD) tại M
c: \(N\in BC\subset\left(ABC\right);A\in\left(ABC\right)\)
Do đó: \(AN\subset\left(ABC\right)\)