K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2022

Đề bài nếu đúng thế này thì đề sai, Q là trung điểm AC, R là trung điểm BD, S là trung điểm MN thì R,Q,S thẳng hàng nên không thể tạo thành mặt phẳng (RQS)

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

15 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác ABC ta có:

MP // AC và MP = AC/2.

Trong tam giác ACD ta có:

QN // AC và QN = AC/2.

Từ đó suy ra {MP // QN}

⇒ Tứ giác MNPQ là hình bình hành.

Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.

Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.

Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS

Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.

23 tháng 1 2017

Đáp án C

29 tháng 4 2018

Đáp án D

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


Giả sử K là trung điểm của AC

Suy ra M,N lần lượt là trọng tâm của tam giác ABC và tam giác ACD

Do đó, tam giác KBC có:\(\frac{{KM}}{{KB}} = \frac{{KN}}{{KD}} = \frac{1}{3}\)

Suy ra MN // BD

Chứng minh tương tự với trường hợp K bất kỳ

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: MP cắt BC tại E mà BC thuộc (BCD)

Nên: E là giao điểm của đường thẳng MP với mặt phẳng (BCD). 

b) Ta có: EN cắt CD tại Q mà EN thuộc (MNP) 

Nên: Q là giao điểm của đường thẳng CD với mặt phẳng (MNP).

c) Ta có: P thuộc (MNP) và (ACD)

Q thuộc (MNP) và (ACD)

Nên PQ là giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP). 

d) △ACN có: \(\dfrac{AP}{AC}=\dfrac{AG}{AN}=\dfrac{2}{3}\)

Suy ra: PG // CN 

Do đó: △PIG đồng dạng với △NIC

Do đó: C, I, G thẳng hàng. 

17 tháng 4 2022

D. k=\(\dfrac{1}{2}\)