K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

CMR: DI ⊥ (ABC).

● AD = a, DH = a ΔDAH cân tại D.

- Mặt khác I là trung điểm của AH nên DI ⊥ AH.

● BC ⊥ (ADH) ⇒ BC ⊥ DI.

⇒ DI ⊥ (ABC).

8 tháng 5 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

Tính khoảng cách giữa AD và BC.

● Trong ΔADH vẽ đường cao HK tức là HK ⊥ AD (1)

- Mặt khác BC ⊥ (ADH) nên BC ⊥ HK (2)

- Từ (1) và (2) ta suy ra d(AD, BC) = HK.

● Xét ΔDIA vuông tại I ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

● Xét ΔDAH ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

8 tháng 8 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên AI ⊥ BC. Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên DI ⊥ BC. Ta suy ra:

BC ⊥ (AID) nên BC ⊥ AD.

b) Vì BC ⊥ (AID) nên BC ⊥ AH

 

Mặt khác AH ⊥ ID nên ta suy ra AH vuông góc với mặt phẳng (BCD).

5 tháng 8 2018

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

a) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao:

AI ⊥ BC

+) Tương tự, tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao:

DI ⊥ BC

+) Ta có: Giải bài tập Toán 11 | Giải Toán lớp 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

25 tháng 8 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

NV
23 tháng 4 2022

a.

Do \(AB=AC\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow AM\) là trung tuyến đồng thời là đường cao

\(\Rightarrow AM\perp BC\) (1)

Mà \(\left\{{}\begin{matrix}AD\perp AB\left(gt\right)\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABC\right)\Rightarrow AD\perp BC\) (2)

(1);(2) \(\Rightarrow BC\perp\left(ADM\right)\)

b.

Từ A kẻ \(AE\perp DM\) (E thuộc DM)

Do \(BC\perp\left(ADM\right)\Rightarrow BC\perp AE\)

\(\Rightarrow AE\perp\left(BCD\right)\Rightarrow AE=d\left(A;\left(BCD\right)\right)\)

\(BC=\sqrt{AB^2+AC^2}=5\sqrt{2}\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{2}}{2}\)

Hệ thức lượng trong tam giác vuông ADM:

\(AE=\dfrac{AD.AM}{\sqrt{AD^2+AM^2}}=\dfrac{5\sqrt{3}}{3}\)

c.

Do \(AD\perp\left(ABC\right)\) theo cmt \(\Rightarrow AM\) là hình chiếu vuông góc của DM lên (ABC)

\(\Rightarrow\widehat{DMA}\) là góc giữa DM và (ABC)

\(tan\widehat{DMA}=\dfrac{AD}{AM}=\sqrt{2}\Rightarrow\widehat{DMA}\approx54^044'\)

NV
23 tháng 4 2022

undefined