
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đáp án B và D giống nhau nên chắc chắn cả 2 đều đúng
Kiểm tra 2 đáp án A và C:
\(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{MC}+\overrightarrow{MD}\right)=\frac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{AC}+\overrightarrow{MB}+\overrightarrow{BD}\right)=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)
Vậy đáp án A đúng nên đáp án C sai

a: Chọn mp(ACD) có chứa MN
Trong mp(BCD), gọi K là giao điểm của BO và CD
K∈BO⊂(ABO)
K∈CD⊂(ACD)
Do đó: K∈(ABO) giao (ACD)(1)
ta có: A∈(ABO)
A∈(ACD)
Do đó: A∈(ABO) giao (ACD)(2)
Từ (1),(2) suy ra (ABO) giao (ACD)=AK
Gọi H là giao điểm của AK và MN
=>H là giao điểm của MN và (BAO)
b: Chọn mp(ABK) có chứa AO
H∈AK⊂(ABK)
H∈MN⊂(BMN)
Do đó: H∈(ABK) giao (BMN)(3)
Ta có: B∈(ABK)
B∈(BMN)
Do đó: B∈(ABK) giao (BMN)(4)
Từ (3),(4) suy ra (ABK) giao (BMN)=BH
Gọi I là giao điểm của BH và AO
=>I là giao điểm của AO và mp(BMN)

Đáp án C
Qua M vẽ đường thẳng song song với AB cắt AC tại P và vẽ đường thẳng song song với CD cắt BD tại Q. Ta có mp (MNPQ) song song với cả AB và CD. Từ đó
Áp dụng tính chất đường trung bình trong tam giác (do M, N là các trung điểm) ta suy ra được MP = MQ = NP = a hay tứ giác MPNQ là hình thoi.
Tính được