\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 12 2021

\(AB^2+CD^2-\left(BC^2+DA^2\right)=\overrightarrow{AB}^2+\overrightarrow{CD}^2-\overrightarrow{BC}^2-\overrightarrow{AD}^2\)

\(=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{AB}-\overrightarrow{AD}\right)+\left(\overrightarrow{CD}-\overrightarrow{BC}\right)\left(\overrightarrow{CD}+\overrightarrow{BC}\right)\)

\(=\overrightarrow{DB}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{DB}\left(\overrightarrow{BC}+\overrightarrow{DC}\right)\)

\(=\overrightarrow{DB}\left(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{BC}+\overrightarrow{DC}\right)\)

\(=2\overrightarrow{AC}.\overrightarrow{DB}\) (đpcm)

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB Chứng minh \(\overrightarrow{BC'}\)...
Đọc tiếp

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB

Chứng minh \(\overrightarrow{BC'}\) =\(\overrightarrow{C'A}\) =\(\overrightarrow{A'B'}\)

4. Cho vecto \(\overrightarrow{AB}\)và một điểm C. Hãy dựng điểm D sao cho \(\overrightarrow{AB}\) =\(\overrightarrow{CD}\)

5. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh \(\overrightarrow{MP}\) =\(\overrightarrow{QN}\) , \(\overrightarrow{MQ}\)=\(\overrightarrow{PN}\)

6. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh rằng

(1) \(\overrightarrow{AB}\) -\(\overrightarrow{BC}\) =\(\overrightarrow{DB}\) , | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= AC

(2) Nếu | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= | \(\overrightarrow{CB}\) - \(\overrightarrow{CD}\) | thì ABCD là hình chữ nhật

7. Cho tam giác ABC đều có độ dài cạnh là a. Tính độ dài các vecto \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\) , \(\overrightarrow{AB}\) - \(\overrightarrow{BC}\)

0

Sửa đề:\(\overrightarrow{AB}=\overrightarrow{DC}\)

=>ABCD là hình bình hành

|vecto AB|=|vecto BC|

=>AB=BC

=>ABCD là hình thoi

15 tháng 12 2022

\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AD}\)

\(=\overrightarrow{BA}+\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BD}\right)\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BD}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{BC}\)

\(=\dfrac{8}{9}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=\overrightarrow{BA}+\dfrac{1}{4}\overrightarrow{AC}\)

Vì 8/9:1=2/9:1/4

nên B,E,K thẳng hàng

19 tháng 10 2016

2

4 tháng 12 2018

\(m\overrightarrow{a}+n\overrightarrow{a}=\overrightarrow{c}\)

\(\Rightarrow\left\{{}\begin{matrix}2m-3n=-4\\m+4n=9\end{matrix}\right.\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}m=1\\n=2\end{matrix}\right.\)

⇒ m2 + n2 = 12 + 22 = 5