Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số điểm cho trước là n (n ∈ N*)
Vẽ từ 1 điểm bất kì với n – 1 điểm còn lại, ta được n – 1 đoạn thẳng.
Với n điểm, nên có n(n – 1) (đoạn thẳng). Nhưng mỗi đoạn thẳng đã được tính 2 lần. Do đó số đoạn thẳng thực sự có là: n(n – 1) : 2 (đoạn thẳng)
Theo đề bài ta có:
n(n – 1) : 2 = 55
n(n – 1) = 55 . 2
n(n – 1) = 110
n(n – 1) = 11 . 10
n = 11
Vậy có 11 điểm cho trước
Gọi số điểm cho trước là n (n ∈ N*)
Vẽ từ 1 điểm bất kì với n – 1 điểm còn lại, ta được n – 1 đoạn thẳng.
Với n điểm, nên có n(n – 1) (đoạn thẳng). Nhưng mỗi đoạn thẳng đã được tính 2 lần. Do đó số đoạn thẳng thực sự có là: n(n – 1) : 2 (đoạn thẳng)
Theo đề bài ta có:
n(n – 1) : 2 = 55
n(n – 1) = 55 . 2
n(n – 1) = 110
n(n – 1) = 11 . 10
n = 11
Vậy có 11 điểm cho trước
Gọi số điểm cho trước là n (n ∈ N*)
Vẽ từ 1 điểm bất kì với n – 1 điểm còn lại, ta được n – 1 đoạn thẳng.
Với n điểm, nên có n(n – 1) (đoạn thẳng). Nhưng mỗi đoạn thẳng đã được tính 2 lần. Do đó số đoạn thẳng thực sự có là: n(n – 1) : 2 (đoạn thẳng)
Theo đề bài ta có:
n(n – 1) : 2 = 55
n(n – 1) = 55 . 2
n(n – 1) = 110
n(n – 1) = 11 . 10
n = 11
Vậy có 11 điểm cho trước
Gọi số điểm cho trước là n ( n > 0 )
Nối 1 điểm bất kì với n - 1 điểm còn lại, ta được n - 1 đường thẳng
\(\Rightarrow\)Số đường thẳng là: n(n-1) ( đoạn thẳng )
Mà mỗi đoạn thẳng lặp lại 2 lần
\(\Rightarrow\)Ta có:
\(\frac{n\left(n-1\right)}{2}=55\)
\(\Rightarrow n\left(n-1\right)=110\)
\(\Rightarrow n\left(n-1\right)=11.10\)
Vậy có 11 điểm cho trước
a)Lấy 1 điểm trong số 100 điểm đó.
Từ điểm đó kẻ với 99 điểm còn lại ta được 99 đoạn thẳng.
Vì có 100 điểm nên có100.99(đoạn thẳng).
Nhưng nếu tính như vậy thì số đoạn thẳng sẽ được lặp lại hai lần.
Vậy vẽ được tất cả số đoạn thẳng là:
100.99:2=4950(đoạn thẳng).
a)số đường thẳng là
\(\frac{30.\left(30-1\right)}{2}=435\)
Gọi số điểm được cho trước là x(điểm)
(Điều kiện: \(x\in Z^+\))
Số đoạn thẳng vẽ được là \(\dfrac{x\left(x-1\right)}{2}\left(đoạn\right)\)
Theo đề, ta có: \(\dfrac{x\left(x-1\right)}{2}=190\)
=>\(x^2-x=190\cdot2=380\)
=>\(x^2-x-380=0\)
=>(x-20)(x+19)=0
=>\(\left[{}\begin{matrix}x-20=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\left(nhận\right)\\x=-19\left(loại\right)\end{matrix}\right.\)
Vậy: Số điểm cho trước là 20 điểm
Gọi số điểm cho trước là x(điểm)
(Điều kiện: \(x\in Z^+\))
Số đoạn thẳng vẽ được khi cho x điểm là:
\(\dfrac{x\left(x-1\right)}{2}\)
Theo đề, ta có: \(\dfrac{x\left(x-1\right)}{2}=190\)
=>\(x\left(x-1\right)=380\)
=>\(x^2-x-380=0\)
=>(x-20)(x+19)=0
=>\(\left[{}\begin{matrix}x-20=0\\x+19=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=20\left(nhận\right)\\x=-19\left(loại\right)\end{matrix}\right.\)
Vậy: Có 20 điểm cho trước