K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Cách dựng:

- Dựng hai tia chung gốc Ox và Oy phân biệt không đối nhau

- Trên tia Ox dựng đoạn OA = m và dựng đoạn AB = n sao cho A nằm giữa O và B

- Trên tia Oy dựng đoạn OC = p.

- Dựng đường thẳng AC

- Từ B dựng đường thẳng song song với AC cắt tia Oy tại D.

Đoạn thẳng CD = q cần dựng.

* Chứng minh:

Theo cách dựng, ta có: AC // BD.

Trong △ OBD ta có: AC // BD

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

22 tháng 4 2017

a) Cách dựng:

- Vẽ hai tia Ox, Oy không đối nhau.

- Trên tia Oy đặt điểm B sao cho OB = 2 đơn vị.

- Lấy trung điểm của OB,

- Nối MA.

- Vẽ đường thẳng đi qua B và song song với MA cắt Ox tại C thì OCOAOCOA = OBOMOBOM; OB = 2 OM

=> xmxm = 2

b) Cách dựng:

- Vẽ hai tia Ox và Oy không đối nhau.

- Trên tia Ox đặt hai đoạn OA= 2 đơn vị, OB= 3 đơn vị.

- Trên tia Oy đặt đoạn OB' = n

- Nối BB'

- Vẽ đường thẳng qua A song song với BB' cắt Oy tại A' và OA' = x.

Ta có: AA' // BB' => OAOBOA′OB′ = OAOBOAOB

hay xnxn = 2323

c) Cách dựng:

- Vẽ tia Ox, Oy không đối nhau.

- Trên tia Ox đặt đoạn OA= m, OB= n.

- Trên tia Oy đặt đoạn OB' = p.

- Vẽ đường thẳng qua A và song song với BB' cắt Oy tại A' thì OA' = x.

Thật vậy: AA' // BB' => OAxOAx = OBOBOBOB′ hay mxmx = npnp

12 tháng 5 2017

Giải

a) Từ giả thiết: \(\dfrac{AM}{MB}=\dfrac{7}{4}\Rightarrow\) \(\dfrac{\left(AM+MB\right)}{AM}=\dfrac{\left(7+4\right)}{7}=\dfrac{11}{7}\)

hay \(\dfrac{AB}{AM}=\dfrac{11}{7}:\dfrac{AM}{MB}=\dfrac{7}{4}\)

\(\Rightarrow\dfrac{AM+MB}{MB}=\dfrac{7+4}{4}=\dfrac{11}{4}\) hay \(\dfrac{AB}{BM}=\dfrac{11}{4}\)

b) Ta có: CB = AB - CA = 6cm - 3,6cm = 2,4cm

DA = AB + BD = 6 + BD

Từ giả thiết: \(\dfrac{DA}{DB}=\dfrac{CA}{CB}=\dfrac{3.6}{2.4}=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{\left(DB+6\right)}{DB}=\dfrac{3}{2}\)

\(\Rightarrow\) 2DB + 12 = 3DB \(\Rightarrow\) DB = 12 cm

Chia đoạn thẳng có độ dài m ra làm 3 đoạn bằng nhau. Lấy 2 phần trong số đó, ta được đoạn thẳng có độ h cần tìm