\(\triangle MNP\) cân tại M, góc M bé hơn\(90^0\). Gọ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

Đặt AM = a ; AN = b thì AB = 3a ; AC = 3b

Áp dụng định lý Py-ta-go vào các tam giác vuông ABN và ACM , ta có :

\(AB^2+AN^2 = BN^2 ; AM^2 + AC^2 = CM^2\)

\(\Rightarrow\) \(9a^2 +b^2 = sin^2\alpha ; a^2 +9b^2 = cos^2\alpha\)

Do đó : \(10(a^2+b^2) = sin^2\alpha + cos^2\alpha = 1\)

\(a^2+b^2 = \dfrac{1}{10}\)

Ta có : \(BC^2 = (3a)^2 + (3b)^2 \)

\(BC^2 = 9(a^2+b^2) \)

\(BC^2 = \dfrac{9}{10}\)

\(\Leftrightarrow\) \(BC= \sqrt{\dfrac{9}{10}}\)

\(\Rightarrow\) \(BC = \dfrac{3}{10} \sqrt{10}\)

5 tháng 8 2020

1/ \(A=\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\) (Vì \(\sqrt{5}-\sqrt{3}>0\))

\(B=\sqrt{6+2\sqrt{5}}-\sqrt{13}+\sqrt{48}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{13}+4\sqrt{3}=\left|\sqrt{5}+1\right|-\sqrt{13}+4\sqrt{3}=\sqrt{5}+1+\sqrt{13}+4\sqrt{5}\)

2/Ta có :

\(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}\)

\(=\left(\frac{3\sqrt{2}}{3\sqrt{3}-3}-\frac{5\sqrt{6}}{3}\right).\frac{1}{\sqrt{6}}\)

\(=\left(\frac{3\sqrt{2}}{3\left(\sqrt{3}-1\right)}-\frac{5\sqrt{6}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}-1\right)}\right).\frac{1}{\sqrt{6}}\)

\(=\frac{3\sqrt{2}-15\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)

\(=\frac{-12\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)

\(=\frac{-7+\sqrt{3}}{6}\)

Vậy...

Bài 1:

Ta có: \(A=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}-2\cdot\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-2\cdot\left|\sqrt{5}-1\right|\)

\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}-2\sqrt{5}+2\)

=2

Vậy: A=2

Bài 2: Sửa đề: Chứng minh \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}=\frac{-7+\sqrt{3}}{6}\)

Ta có: \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{9\sqrt{2}}{3\left(\sqrt{27}-3\right)}-\frac{\sqrt{150}\left(\sqrt{27}-3\right)}{3\cdot\left(\sqrt{27}-3\right)}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{9\sqrt{2}-45\sqrt{2}+3\sqrt{150}}{9\left(\sqrt{3}-1\right)}\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{-36\sqrt{2}+3\sqrt{150}}{9\sqrt{6}\cdot\left(\sqrt{3}-1\right)}\)

\(=\frac{\sqrt{54}\cdot\left(5-4\sqrt{3}\right)}{\sqrt{486}\cdot\left(\sqrt{3}-1\right)}\)

\(=\frac{5-4\sqrt{3}}{3\sqrt{3}-3}\)

\(=\frac{-7+\sqrt{3}}{6}\)(đpcm)

21 tháng 8 2019

Tự vẽ hình

Ta có : \(CA . CE = CD . CB\)

\(\Rightarrow\) \(\dfrac{CA}{CD} = \dfrac{CB}{CE}\)

Xét \(\bigtriangleup{CAD} \)\(\bigtriangleup{CBE}\) , có :

\(\widehat{BCE}\) : chung

\(\widehat{CDA} = \widehat{CBE} = 90 ^0\)

\(\Rightarrow\) \(\bigtriangleup{CAD}\) ~ \(\bigtriangleup{CBE}\) ( g.g)

\(\Rightarrow\) \(\dfrac{CA}{CB} = \dfrac{CD}{ CE}\)

\(\Rightarrow\) \(CA. CE = CB . CD\) (đpcm)

21 tháng 8 2019

b, Xét \(\bigtriangleup{AQC}\) vuông tại Q , có : \(QE \perp AD\)
Áp dụng hệ thức \(b^2 = a . b'\) , có :

\(\Leftrightarrow\) \(CQ^2 = CA . CE \) (1)

Xét \(\bigtriangleup{CPB}\) vuông tại P , có : \(PD \perp BC\)

Áp dụng hệ thức \(b^2= a . b'\)

\(\Leftrightarrow\) \(CP^2 = CB . CD \) (2)

\(CA . CE = CB . CD \) (cmt) (3)

Từ (1),(2) và (3) \(\Rightarrow\) \(CQ^2 = CP^2\)

\(\Rightarrow\) \(CQ = CP \) (đpcm)