Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)
Hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)
\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=2^2+5^2=29\)
\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Hình tự vẽ nha
a. Độ dài cạnh BC: \(BC=\dfrac{AB^2}{BH}\) \(=\dfrac{6^2}{3}\) \(=12\) \(\left(cm\right)\)
Ta có: \(BH+HC=BC\)
⇔ \(3\) \(+\) \(HC\) \(=\) \(12\)
⇒ \(HC=9\) \(\left(cm\right)\)
Độ dài AH: \(AH^2=BH\times HC\)
⇒ \(AH^2\)\(=\) \(3\) \(\times\) \(9\)
⇒ \(AH^2\)\(=\) \(27\)
⇒ \(AH\) \(=\) \(3\sqrt{3}\)
Vậy \(AH\) \(=\) \(3\sqrt{3}\) \(;\) \(HC=9\) \(cm\) \(;\) \(BC=12\) \(cm\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow6^2=3.BC\Rightarrow BC=12\left(cm\right)\)
tam giác ABC vuông tại A nên áp dụng Py-ta-go
\(\Rightarrow AC^2=BC^2-AB^2=12^2-6^2=108\Rightarrow AC=6\sqrt{3}\left(cm\right)\)
Ta có: \(CH=BC-BC=12-3=9\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.6\sqrt{3}}{12}=3\sqrt{3}\left(cm\right)\)
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>BH(BH+2)=3
=>\(BH^2+2HB-3=0\)
=>(BH+3)(BH-1)=0
=>BH=-3(loại) hoặc BH=1(nhận)
Vậy: BH=1cm