K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

S=1+2+2^2+2^3+....+2^59 chia hết cho 3

S=(1+2)+(2^2+2^3)+..+(2^58+2^59)

S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)

S=1x3+2^2x3+....+2^58x3

S=3x(1+2^2+.....+2^58)chia hết cho 3

Vậy S chia hết cho 3

tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số

you học lớp mấy

27 tháng 9 2017

a) Ta có: \(S=1+2+2^2+...+2^{59}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{60}\)

\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)

\(\Rightarrow S=2^{60}-1\)

3 tháng 10 2017

1. S = 1 + 2 + 2^2 +.........+ 2^59

  2S = 2 + 2^2 + ...........+ 2^59 + 2 ^60

2S - S = (2 + 2^2 +.........+ 2^60) - (1 +2 + 2^2 +..........+ 2^59)

 S = 2^60 - 1

mà 2^60 -1 = 2^60 - 1 => S = 2^60 -1

2.

Ta có : S = 1 + 2 +..............+ 2^59

S = 1(1 +2) + 2^2(1 +2 ) +........+ 2^58(1 +2)

S = 1.3 + 2^2.3 +...............+ 2^58.3

S = 3.(1 + 2^2 +.............+2^58) nên S chia hết cho 3

Cứ như vậy bạn nhóm các số hạng của S để tạo thành tổng có kết quả là 7 và 15 rồi tự chứng minh nhé

8 tháng 10 2020

Nhờ thì nói luôn đi, đố cái gì-.-

a) Ta có: \(S=1+2+...+2^{59}\)

\(\Rightarrow2S=2+2^2+...+2^{60}\)

\(\Rightarrow2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)

\(\Leftrightarrow S=2^{60}-1< 2^{60}\)

b) Ta có: \(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{57}+2^{58}+2^{59}\right)\)

\(S=7+2^3\cdot7+...+2^{57}\cdot7\)

\(S=7\cdot\left(1+2^3+...+2^{57}\right)\) chia hết cho 7

8 tháng 10 2020

theo mik thì bạn phải tách ra là S = 1+2+2^2+2^3+2^4+2^5+2^7 chứ ???

20 tháng 3 2018

2S=2^2+2^3+2^4+...+2^61

2S-S=S=2^61-2

còn câu b bạn tự làm nhé

21 tháng 11 2015

S=1+2+2^2+2^3+...+2^59

S=(1+2)+(2^2+2^3)+...+(2^58+2^59)

S=3+2^2(1+2)+...+2^58.(1+2)

S=3+2^2.3+...+2^58.3

S= 3.( 1+2^2+...+2^58) chia hết cho 3

S=1+2+2^2+2^3+...+2^59

S=(1+2+2^2)+(2^3+2^4+2^5)+...+(2^57+2^58+2^59)

S=7.2^3(1+2+2^2)+....+2^57(1+2+2^2)

S=7+2^3.7+...+2^57.7

S=7.(1+2^3+...+2^57) chia hết cho 7

S= 1+2+2^2+2^3+...+2^59

S=(1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+...+(2^56+2^57+2^58+2^59)

S=15+2^4(1+2+2^2+2^3)+...+2^56(1+2+2^2+2^3)

S=15+2^4.15+...+2^56.15

S=15(1+2^4+...+2^56) chia hết cho 15

chắc chắn đúng tick cho mình nhé!

6 tháng 7 2017

Bài 1:x là số chẵn(x\(\in\)N)

6 tháng 7 2017

bai 1 :x la so chan (chia het cho 2)

         x la so le (khong chia het cho 2

bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5

bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11

11 tháng 12 2015

chtt

**** cho tớ nhé

11 tháng 12 2015

S=2+2^2+2^3+2^4+...+2^59+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=(1+2+2^2+2^3)(2+...+2^57)

=15.(2+...+2^57) chia hết cho 15

22 tháng 10 2015

Ta có:

\(S=3+3^2+3^3+...+3^{2007}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{2005}+3^{2006}+3^{2007}\right)\)

\(=1.\left(3+3^2+3^3\right)+...+3^{2004}.\left(3+3^2+3^3\right)\)

\(=\left(1+...+3^{2004}\right).\left(3+3^2+3^3\right)\)

\(=\left(1+...+3^{2004}\right).39=\left(1+...+3^{2004}\right).3.13\) chia hết chp 13

22 tháng 10 2015

a) S= 3+3^2+....+3^2007  
      = ( 3 + 3^2 +3^3)+....+(3^2005+3^2006+2^2007)
      = 3(1+3+9)+......+3^2005(1+3+9)
     = 3. 13 +......+2^2005.13
     =13(3+...+2^2005) chia hết cho 13 
=> ĐPCM
b) S= 3+3^2+....+3^2007
      = 3 + (3^2+3^3+3^4+3^5)+.....+(3^2004+3^2005+3^2006+3^2007)
      = 3 + 3^2( 1+3+9+27)+.....+3^2004(1+3+9+27)
      = 3+ 3^2.40 +....+3^2004.40 
     = 3+ 40(3^2+...+3^2004) chia cho 40 dư 3
MÌnh nghĩ câu c, k đến nỗi nào , cô lên , 2S + 3 thì cứ làm theo vd sau 
A= 2+2^2+...+2^11
2A = 2^2+...+2^12
rồi làm hơ ,