Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
Áp dụng BĐT cô si ta có:\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)
LÀm tương tự ta có:
\(\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\\\frac{a}{c}+\frac{c}{a}\ge2\\\frac{c}{b}+\frac{b}{c}\ge2\end{cases}}\Rightarrowđpcm\)
Vậy GTNN của S =6 khi a=b=c
bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương
Sửa đề bài nè bạn : Cho \(a,b\inℕ^∗\)và \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\). Chứng minh rằng : \(S\ge6\)
Giải:
\(S=\left[\frac{a}{c}+\frac{b}{c}\right]+\left[\frac{b}{c}+\frac{c}{a}\right]+\left[\frac{c}{b}+\frac{a}{b}\right]\)
\(S=\left[\frac{a}{c}+\frac{c}{a}\right]+\left[\frac{b}{c}+\frac{c}{b}\right]+\left[\frac{b}{a}+\frac{a}{b}\right]\)
\(S\ge2+2+2=6\)
\(\Rightarrow(đpcm)\)
a) \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)
\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Tổng của hai phân số dương nghịch đảo bao giờ cũng lớn hơn hoặc bằng 2 nên :
\(\frac{a}{c}+\frac{c}{a}\ge2\) ; \(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{b}{a}+\frac{a}{b}\ge2\)
\(\Rightarrow S\ge2+2+2=6\)
b) \(S\ge6\) nên GTNN của S là 6 ( \(\Leftrightarrow\) a = b =c )
a] Ta có : \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\); \(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
\(\Rightarrow S\ge2+2+2=6\)
b] Ta có \(S=6\Leftrightarrow a=b=c\)
GTNN của S =6
\(a,S=\left[\frac{a}{c}+\frac{b}{c}\right]+\left[\frac{b}{c}+\frac{c}{a}\right]+\left[\frac{c}{b}+\frac{a}{b}\right]\)
\(S=\left[\frac{a}{c}+\frac{c}{a}\right]+\left[\frac{b}{c}+\frac{c}{b}\right]+\left[\frac{b}{a}+\frac{a}{b}\right]\)
\(S\ge2+2+2=6\)
\(b,GTNN\)của \(S=6\Leftrightarrow a=b=c\inℕ\)
\(S_1+S_2+S_3=\left[\frac{b}{a}x+\frac{c}{a}z\right]+\left[\frac{a}{b}x+\frac{c}{b}y\right]+\left[\frac{a}{c}z+\frac{b}{c}y\right]\)
\(=\left[\frac{b}{a}x+\frac{a}{b}x\right]+\left[\frac{c}{b}y+\frac{b}{c}y\right]+\left[\frac{c}{a}z+\frac{a}{c}z\right]\)
\(=\left[\frac{b}{a}+\frac{a}{b}\right]x+\left[\frac{c}{b}+\frac{b}{c}\right]y+\left[\frac{c}{a}+\frac{a}{c}\right]z\)
\(S_1+S_2+S_3\ge2x+2y+2z=2\left[x+y+z\right]=2\cdot5=10\)
Vậy : \(S_1+S_2+S_3\ge10\)
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}.\)
\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}.\)
Áp dụng bất đẳng thức Cauchy ta có:
\(\frac{a}{c}+\frac{c}{a}\ge2\left(1\right)\)
\(\frac{b}{c}+\frac{c}{b}\ge2\left(2\right)\)
\(\frac{a}{b}+\frac{b}{a}\ge2\left(3\right)\)
Cộng (1) ; (2) và (3) ta được :
\(S=\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\ge6\) (đpcm)