Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 3+32+33+...+32021
A = ( 3+32+33 )+ (34 + 35 + 36 )+ .... +( 32019 + 32020 + 32021)
A = 3. (1 + 3 + 32) + 34 . (1 + 3 + 32) + .... + 32019. (1 + 3 + 32)
A = 3 . 13 + 34 . 13 + ... + 32019 . 13
A = 13 . (3 + 34 + .... + 32019) chia hết cho 13.
Vậy tổng của A chia cho 13 có số dư là 0
- Xét: Tổng B có 101 số hạng, nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng
=> B = 1 + (3+32+33+34) + (35+36+37+38) +.....+ (397+398+399+3100)
=> B = 1 + 3(1+3+32+33) + 35(1+3+32+33) +.....+ 397(1+3+32+33)
=> B = 1 + 40.(3+35+...+397)
Có 1 chia 40 dư 1
40.(3+35+...+397)
chia hết cho 40
=> 1 + 40.(3+35+...+397) chia 40 dư 1
=> B chia 40 dư 1
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + (43 + 44) + ... + (423 + 424)
= 4 (1 + 4) + 43 (1 + 4) + ... + 423 (1 + 4)
= 4 . 5 + 43 . 5 + ... + 423 . 5
= 20 + 20 . 42 + ... + 20 . 422
= 20 (1 + 42 + ... + 422) chia hết cho 20
ĐPCM
Theo đề bài,ta có :
A = \((1+3^2)+(3^4+3^6+3^8)+...+(3^{2002}+3^{2004}+3^{2006})\)
A = \(10+3^4(1+3^2+3^4)+...+3^{2002}(1+3^2+3^4)\)
A = \(10+3^4\cdot91+...+3^{2002}\cdot91\)
A = \(10+(3^4+...+3^{2002})\cdot91\)
A = \(10+7\cdot13(3^4+...+3^{2002})\)
Vậy : \(A=1+3^2+3^4+3^6+...+3^{2004}+3^{2006}⋮13\)dư 10
Chúc bạn học tốt
Ai giúp mk với mik sẽ cho **** ngay thui nhưng nhanh lên mik sắp đi học rùi!
\(M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(M=4+13\cdot\left(3^2+3^5+...+3^{98}\right)\)chia 13 dư 4
\(M=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(M=1+40\cdot\left(3+...+3^{97}\right)\)chia 40 dư 1
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.