Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 1x(2-1) + 2x(3-1)+3x(4-1)+...+nx(n+1 - 1) Hay A = 1x2+2x3+3x4+...+nx(n+1)-(1+2+3+...+n) tách ra làm hai dãy thì hai dãy B = 1x2+2x3+3x4+...+nx(n+1) (dãy này ra nx(n+1)x(n+2)/3) và C = 1+2+3+..+n ra nx(n+1)/2 trừ đi là ra kết quả
Ta có: \(S=1+\frac{1}{2x2}+\frac{1}{3x3}+.....+\frac{1}{10x10}\)
Ta có: 1/2x2 < 1/1x2
1/3x3 < 1/2x3
1/4x4 < 1/3x4
.......................
1/10x10 < 1/9x10
=> S< 1+1/1x2+1/2x3+1/3x4+.....+1/9x10
=> S<1+(1-1/10)
=> S < 1+9/10
=> S < 19/10 < 2
Vậy S<2
1 ... 1/1 x 1 + 1/2 x 2 + 1/3 x 3 + ... + 1/100 x 100
1 ... 1+1/2x2+1/3x3+...+1/100x100
1=1/1x1+1/2x2+1/3x3+...+1/100x100
1.
\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2012}{2013}\)
\(A=\frac{1.2.3.4.....2012}{2.3.4.5......2013}\)
\(A=\frac{1}{2013}\)
\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)
\(B=\frac{2012\left(2013-2012\right)}{2012\left(2011+2\right)}\)
\(B=\frac{2013-2012}{2011+2}\)
\(B=\frac{1}{2013}\)
\(Vì:\frac{ 1}{2013}=\frac{1}{2013}\)
\(\Rightarrow\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)
\(Hay: A=B\)
\(A=\frac{1\times2}{2\times2}\times\frac{2\times3}{3\times3}\times\frac{3\times4}{4\times4}\times\frac{4\times5}{5\times5}\times...\times\frac{2012\times2013}{2013\times2013}\)
\(\Rightarrow A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2012}{2013}\)
\(\Rightarrow A=\frac{1\times2\times3\times4\times...\times2012}{2\times3\times4\times5\times...\times2013}\)
\(\Rightarrow A=\frac{1}{2013}\)
\(B=\frac{2012\times2013-2012\times2012}{2012\times2011+2012\times2}\)
\(\Rightarrow B=\frac{2012\times\left(2013-2012\right)}{2012\times\left(2011+2\right)}\)
\(\Rightarrow B=\frac{2012\times1}{2012\times2013}\)
\(\Rightarrow B=\frac{1}{2013}\)
Tính
A=1x2x3+2x3x3+3x4x3+4x5x3+....+98x99x3
B=1x2+2x3+3x4+4x5+...+98x99
C=1x1+2x2+3x3+4x4+5x5+...+98x98
A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+....+98.99(100-97) "." la dau nhan
A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+98.99.100-97.98.99
A=1.2.3+98.99.100
A= 970206
Ta có : B = 1.2 + 2.3 + 3.4 + ..... + 98.99
=> 3B = 0.1.2 + 1.2.3 - 1.2.3 + ...... + 98.99.100
=> 3B = 98.99.100
=> B = \(\frac{98.99.100}{3}\) = 323400
Ta có A = 1x(2-1) + 2x(3-1)+3x(4-1)+...+nx(n+1 - 1) Hay A = 1x2+2x3+3x4+...+nx(n+1)-(1+2+3+...+n) tách ra làm hai dãy thì hai dãy
B = 1x2+2x3+3x4+...+nx(n+1) (dãy này ra nx(n+1)x(n+2)/3) và
C = 1+2+3+..+n ra nx(n+1)/2 trừ đi là ra kết quả