Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng \(y=ax+b\) đi qua hai điểm \(A,B\) là
\(\left\{{}\begin{matrix}1=a\cdot0+b\\3=a\cdot\left(-4\right)+b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=1\end{matrix}\right.\\ \Leftrightarrow y=-\dfrac{1}{2}x+1\)
Tọa độ điểm \(M\left(x_M;y_M\right)\) là trung điểm của \(AB\)
\(x_M=\dfrac{x_A+x_B}{2}=\dfrac{0+\left(-4\right)}{2}=\dfrac{-4}{2}=-2\\ y_M=\dfrac{y_A+y_B}{2}=\dfrac{1+3}{2}=\dfrac{4}{2}=2\\ \Leftrightarrow M\left(-2;2\right)\)
Phương trình đường thẳng \(\left(d\right):y=a'x+b'\perp y=\dfrac{-1}{2}x+1\) và đi qua \(M\left(-2;2\right)\)
\(\left\{{}\begin{matrix}a'\cdot\dfrac{-1}{2}=-1\\2=a'\cdot\left(-2\right)+b'\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a'=2\\b'=6\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=2x+6\)
a) (d') y =-x +b
=> 1 = -(-2) +b => b =-2
(d') y =-x -2
b) x =0 (d') => y = -2 B(0;-2)
y =0 (d) => -x+2 =0 => x = 2 => C(-2;0)
\(AB=\sqrt{\left(-2-0\right)^2+\left(1+2\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(-2+2\right)^2+\left(1-0\right)^2}=1\)
\(BC=\sqrt{\left(0+2\right)^2+\left(-2-0\right)^2}=2\sqrt{2}\)
a) Thay tọa dộ của điểm T vào dg thẳng d ta dc: -2.(-2) - 6 = -2 (Thỏa mãn)
Vậy điểm T có thuộc dg thẳng d
b) Pt hoành độ giao điểm của (d) và (P) là: -8x2 = -2x - 6
<=> 8x2 - 2x - 6 = 0
<=> (x - 1)(8x + 6) = 0 <=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{4}\end{cases}}\)
* Với x = 1 => y = -8
* Với x = -3/4 => y = -9/2
Tự kết luận nha
c1:
Vì (d')//d nên pt đường thẳng của (d') là:y=-3x+b
đường thẳng (d') có tung độ gốc =2 => b=2
Vậy : pt đường thẳng của (d') là:y=-3x+2