\(a^{2016}\)thì đồng dư với bao nhiêu mod 2,3 nhỉ 

Có các...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

a. Phải bổ sung điều kiện a và b không âm nữa thì mới chứng minh được.

Đặt a = n2 => n = \(\sqrt{a}\)

Đặt b = m2 => m = \(\sqrt{b}\)

mà a < b

=> n2 < m2

=> \(\frac{n^2}{n}< \frac{m^2}{m}\)

=> n < m 

=> \(\sqrt{a}< \sqrt{b}\)

b. Nếu \(\sqrt{a}< \sqrt{b}\)

=> \(\sqrt{a}.\sqrt{a}< \sqrt{b}.\sqrt{b}\)

=> a < b

6 tháng 8 2018

câu 3b) 0

5 tháng 7 2016

bài 1:

a) \(m>1\)

=>\(\sqrt{m}>\sqrt{1}\)

=>\(\sqrt{m}>1\)

b) \(m< 1\)

=>\(\sqrt{m}< \sqrt{1}\)

=>\(\sqrt{m}< 1\)

30 tháng 5 2019

cho mình hướng chứng minh <4 đi bạn

31 tháng 5 2019

bạn tham khảo, chứ mình ko chắc đúng

dễ cm \(a\ne0\)

\(\Leftrightarrow a^5+a=2+a^3\)

\(\Leftrightarrow a^2+\frac{1}{a^2}=\frac{2}{a^3}+1\)

có \(a^2+\frac{1}{a^2}\ge2\)( cosi)

\(\Rightarrow\frac{2}{a^3}+1\ge2\)

\(\Leftrightarrow a^3\le2\)

dễ cm dấu = ko xảy ra

\(\Rightarrow a^6< 4\)

2 tháng 8 2017

a,Nếu a<b thì a-b<0,=>\(\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)< 0\)Hằng đẳng thức.

\(\left(\sqrt{a}+\sqrt{b}\right)>0\)với a,b khác nhau \(\left(\sqrt{a}-\sqrt{b}\right)< 0\left(ĐPCM\right)\)

b,Nếu \(\sqrt{a}< \sqrt{b}\)thì \(\sqrt{a}-\sqrt{b}\)<0,=>(a-b).(a+b)<0 Hằng đẳng thức.

(a+b)>0 với a,b khác nhau (a-b)<0\(\left(ĐPCM\right)\)