K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Ta có:

na^2=b^2

=>n=b^2:a^2

=>n=(b:a)^2

Vì n;a;bEN

=>(b:a)^2EN

=>b:aEN

=>(b:a)^2 là số chính phương

=>n là số chính phương\

Vậy.......

9 tháng 2 2018

b)

đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số) 
=>2A =2.[1+2^1+2^2+.....+2^(n-1)] 
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2) 
lấy (2) - (1) vế theo vế ta có: 
2A-A= 2^n -1 
=> A= 2^n -1 
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1) 
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1) 
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1) 
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng 
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm 
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1 
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số

26 tháng 1 2016

Co ai giup minh ko chang le newbie ko dc giup sao

3 tháng 7 2017

a) A=(n+1)(n+2)(n+3)(n+4)+1 

A= (n+1)(n+4)(n+2)(n+3)+1

A=(n2+5n+4)(n2+5n+6)+1

Đặt n2+5n+5 =y ta có:

A=(y-1)(y+1) +1 =y2-1+1=y2

\(\Rightarrow\)A= (n2+5n+5) là 1 số chính phương

b)Đề sai ở chỗ 2017.2018 sửa lại là: 2.2017.2018

Thì A = 20172+20182+2.2017.2018

     A = (2017+2018)2 

     A = 40352 là 1 số chính phương .

3 tháng 7 2017

thanks pn nhìu

\(B=\left(n-1\right)\left(n+5\right)\left(n+1\right)\left(n+3\right)+16\)

\(=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\)

\(=\left(n^2+4n\right)^2-2\left(n^2+4n\right)-15+16\)

\(=\left(n^2+4n-1\right)^2\) là số chính phương

15 tháng 1 2022

\(B=\left(n^2-1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left(n-1\right)\left(n+1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left[\left(n-1\right)\left(n+5\right)\right]\left[\left(n+1\right)\left(n+3\right)\right]+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n-5+8\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)^2+8\left(n^2+4n-5\right)+16\\ \Rightarrow B=\left(n^2+4n-5+4\right)^2\\ \Rightarrow B=\left(n^2+4n-1\right)^2\)

Vậy B là số chính phương với mọi số nguyên n