\(\frac{a}{b}=\frac{c}{d}\) hãy CTR

a) \(\frac{a}{b}=\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a) Khi đó, ta có:

 +) \(\frac{bk}{b}=k\)

+) \(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)

=> \(\frac{a}{b}=\frac{a+c}{b+d}\)

b) Ta có:

 +) \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)

 +) \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)

=> \(\frac{a-b}{b}=\frac{c-d}{d}\)

15 tháng 7 2019

c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Do đó \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)(1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\left(đpcm\right)\)

13 tháng 12 2017

a, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)'

Ta  có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(\frac{3a+2c}{3b+2d}=\frac{3bk+2dk}{3b+2d}=\frac{k\left(3b+2d\right)}{3b+2d}=k\left(2\right)\)

Từ (1) và (2) => đpcm

b, Đặt a/b=c/d=k => a=bk,c=dk

Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(2\right)\)

Từ (1) và (2) => đpcm

14 tháng 11 2016

Đặt Bằng a = bk 

c = dk Rồi thay vào biểu thức nha bạn

14 tháng 11 2016

thank you

27 tháng 11 2016

a/ do \(\frac{a}{b}\) = \(\frac{c}{d}\) =  \(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)(điều phải suy ra)

bạn viết sai đề bài b nhé phân số đầu là \(\frac{2a+3c}{2b+3d}\)

b/ đặt  \(\frac{a}{b}\)\(\frac{c}{d}\) là K

a=Kb;c=Kd

ta có:\(\frac{2a+3c}{2b+3d}\)\(\frac{2Kb+3Kd}{2b+3d}\) = \(\frac{k\left(2b+3d\right)}{2b+3d}\) = K (1)

\(\frac{2a-3c}{2b-3d}\) = \(\frac{2Kb-3Kd}{2b-3d}\) = \(\frac{k\left(2b-3d\right)}{2b-3d}\) =K (2)

từ (!) và (2) suy ra \(\frac{2a+3c}{2b+3d}\) = \(\frac{2a-3c}{2b-3d}\)

9 tháng 8 2016

Giải:

a,Từ\(\frac{a}{b}\)=\(\frac{c}{d}\)

=>\(\frac{a}{b}\).\(\frac{c}{d}\)=\(\frac{a}{b}\).\(\frac{a}{b}\)=\(\frac{c}{d}\).\(\frac{c}{d}\)

=>\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta được:

\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)

=>\(\frac{ac}{bd}\)=\(\frac{a^2+b^2}{c^2+d^2}\)  (đpcm)

b,Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{2c}{2d}\)=\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)

=>\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)

=>(b+d).(a+2c)=(a+c),(b+2d)   (đpcm)

9 tháng 8 2016

tick nha

23 tháng 11 2019

a) \(\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)

áp dụng t/c dãy tỉ số = nhau : 

\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)

mấy bài kia cũng tương tự em ạ !

gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)

                                               => a=bk; c=dk

rồi thay vào các biểu thức

18 tháng 11 2018

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}=\frac{7a^2+3ab}{7b^2+3cd}=\frac{11a^2-5b^2}{11c^2-5d^2}\)

\(\Rightarrow\frac{7a^2+3ab}{11a^2-5b^2}=\frac{7c^2+3cd}{11c^2-5d^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4\)(1)

\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)(2)

từ (1) và (2) => đpcm

c) áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)

\(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)(2)

từ (1) và (2) => đpcm