Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. a) \(đk:x\ne1;x\ne-2\)
Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
x | -1 | -3 | 3 | -7 |
b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)
Cậu có thể vào đây tham khảo : http://h.vn/hoi-dap/question/119685.html
=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{2^2.3^2...n^2}{1.3.2.4....\left(n-1\right).\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4...n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4.5...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)
=> 1008.2n = 2015.(n+1)
<=> 2016n = 2015n + 2015
<=> n = 2015
*) Bạn hỏi câu này một lần rồi!!!
bạn kiểm tra lại đề nhé! vì số hạng tổng quát chẳng liên quan gì đến số hạng đầu
Có thể đề đúng là: \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)
<=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right)^2}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4....n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)
<=> 2n.1008 = 2015.(n+1)
<=> 2016n = 2015n + 2015
<=> n = 2015
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}=\left(1+\frac{1}{1.3}+\frac{1}{2.4}\right)=2.185897436\)
\(B=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)...\left(\frac{n.\left(n+2\right)+1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{2^2}{1.3}\right).\left(\frac{3^2}{2.4}\right).\left(\frac{4^2}{3.5}\right)...\left(\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\right)\)
\(=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(=\frac{\left(n+1\right)}{1}.\frac{2}{\left(n+2\right)}\)
\(=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}=2.\frac{n+1}{n+2}< 2\)(vì \(\frac{n+1}{n+2}< 1\))
Vậy B < 2
Ta có:
\(1+\frac{1}{1.3}=\frac{4}{1.3}=\frac{2^2}{1.3}\)
\(1+\frac{1}{2.4}=\frac{9}{2.4}=\frac{3^2}{2.4}\)
\(1+\frac{1}{3.5}=\frac{16}{3.5}=\frac{4^2}{3.5}\)
...
\(1+\frac{1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
=>
\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.2.3^2.4^2...\left(n+1\right)\left(n+2\right)}=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}\)
\(=\frac{2\left(n+2\right)-2}{n+2}=2-\frac{2}{n+2}< 2\)
Vậy B < 2