\(\frac{a}{b}\)=\(\frac{c}{d}\)Chứng minh rằng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}\)

\(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\)

tíc mình nhé! Thanks

1 tháng 9 2016

Đặt a/b=c/d=k=>a=kb;c=kd

Khi đó ta có:3a-2b/3a+2b=3kb-2b/3kb+2b=b(3k-2)/b(3k+2)=3k-2/3k+2 (1)

                  3c-2d/3c+2d=3kd-2d/3kd+2d=d(3k-2)/d(3k+2)=3k-2/3k+2 (2)

Từ (1) và (2) =>....

                             

26 tháng 2 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

ta có : \(\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)

\(\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)

\(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)

20 tháng 2 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{5a+2b}{5c+2d}\)

\(\Rightarrow\frac{3a-2b}{5a+2b}=\frac{3c-2d}{2c+2d}\) ( đpcm )

3 tháng 12 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\). Ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{b^3\left(k-1\right)^3}{d^3\left(k-1\right)^3}=\frac{b^3}{d^3}\)

\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3b^2k^2+2b^2}{3d^2k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\frac{b^2}{d^2}\)

Đến đây nhìn có vẻ đề sai

3 tháng 12 2018

\(\frac{a}{b}=\frac{c}{d}=k\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{\left[b\left(k-1\right)\right]^3}{\left[d\left(k-1\right)\right]^3}=\frac{b^3}{d^3}\)

\(\frac{2b^2+3a^2}{2d^2+3c^2}=\frac{4.b^2+9.k^2.b^2}{4.d^2+9.d^2.k^2}=\frac{b^2\left(4+k^2.9\right)}{d^2\left(4+9.k^2\right)}=\frac{b^2}{d^2}\)

\(Taco:\frac{b^3}{d^3}=\frac{b^2}{d^2}\Leftrightarrow b=d\)

8 tháng 5 2018

a )    \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{b}{d}=\frac{2a}{2c}=\frac{2a+b}{2c+d}=\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\left(đpcm\right)\)

b )  \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\left(đpcm\right)\)

Chúc bạn học tốt !!! 

8 tháng 5 2018

\(\frac{a}{c}=\frac{b}{d}\)

suy ra\(\frac{2a}{2c}=\frac{b}{d}=\frac{2a+b}{2c+d}\left(1\right)\)

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\left(2\right)\)

\(tu\left(1\right)\left(2\right)suyra\)\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

22 tháng 4 2018

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

22 tháng 4 2018

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)

3 tháng 12 2019

Ta có: \(\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)

\(\Rightarrow\frac{3a+4b}{3a-4b}-1=\frac{3c+4d}{3c-4d}-1\)

\(\Leftrightarrow\frac{8b}{3a-4b}=\frac{8d}{3c-4d}\)

\(\Rightarrow b\left(3c-4d\right)=d\left(3a-4b\right)\)

\(\Leftrightarrow3bc=3ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

22 tháng 9 2015

a) Ta có : \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}\)

\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\left(đpcm\right)\)