\(\frac{a}{b}=\frac{c}{d}\left(b,d\ne0\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

a) sai đề rồi bn 

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)

từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)

22 tháng 11 2015

Ta có: \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}\)

=>\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\)

=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\) (theo tính chất dãy tỉ số bằng nhau)

=>\(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)(đpcm)

30 tháng 7 2019

#)Giải :

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)

\(\Rightarrowđpcm\)

7 tháng 10 2019

Ta có \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=>\(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)

=>\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)

7 tháng 10 2019

Ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Vậy khi \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)

Chúc em học tốt nhé!

15 tháng 11 2018

Câu hỏi là gì 

15 tháng 11 2018

mk ghi thiếu đề m.n thông cảm 

Chứng minh rằng x<y thì x<z<y

      ~~~~~nhe bn~~~~~