\(\frac{a}{b}=\frac{c}{d}\)

CMRa)\(\frac{ab}{cd...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

đề sai \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

13 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow VT=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)

\(\Rightarrow VP=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

 

2 tháng 8 2016

Ta có:

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a) \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b) \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2\right)+1}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

9 tháng 11 2018

c) có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a^2}{^{c^2}}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

   Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

các câu còn lại bạn tự làm đi! HI.......

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)

mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0

Xem ở lick này nhé (mình gửi cho)

Học tốt!!!!!!!!!!!!!

28 tháng 7 2019

@@ chị linh Link dài vậy giải lun phải hơn không

DD
25 tháng 5 2021

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Rightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)

\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)

\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\).