Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
a) 12. \(\frac{4}{9}\)+\(\frac{4}{3}\)=\(\frac{16}{3}\)+\(\frac{4}{3}\)=\(\frac{20}{3}\)
b) (\(\frac{-5}{7}\)) . (12,5+1,5)= (\(\frac{-5}{7}\)).14=-10
a) \(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}=12.\frac{4}{9}+\frac{4}{3}=\frac{16}{3}+\frac{4}{3}=\frac{20}{3}\)
b) \(12,5.\left(-\frac{5}{7}\right)+1,5.\left(-\frac{5}{7}\right)=-\frac{5}{7}.\left(12,5+1,5\right)=-\frac{5}{7}.14=-10\)
c) \(1:\left(\frac{2}{3}-\frac{3}{4}\right)^2=1:\left(-\frac{1}{12}\right)^2=1:\frac{1}{144}=1.144=144\)
d) \(15.\left(-\frac{2}{3}\right)^2-\frac{7}{3}=15.\frac{4}{9}-\frac{7}{3}=\frac{20}{3}-\frac{7}{3}=\frac{13}{3}\)
e) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(-1\right)^{2007}=\frac{1}{2}.8-\frac{2}{5}+\left(-1\right)=4-\frac{2}{5}-1=\frac{13}{5}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))
\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)
ta có (a+b-c/c)+2=(a-b+c/b)+2=(-a+b+c/a)+2
=>a+b-c+2c/c=a-b+c+2b/b=-a+b+c+2a/a
=>a+b+c/c=a+b+c/b=a+b+c/a (1)
Trường hợp 1
Nếu a+b+c=0 => a+b=-c
=> b+c=-a
=> a+c=-b
M= (-c)(-a)(-a)/abc = -1
Trường hợp 2
Từ (1) =>(a+b+c). 1/c =(a+b+c). 1/b =(a+b+c). 1/a
=>1/a=1/b=1/c
Từ (1) =>3(a+b+c)/a+b+c=3
hay (a+b/c)+1=(a+c/b)+1=(b+c/a)=2
Nguyễn Trọng Tâm Đạt làm sai một TH nhé =)
trường hợp 2
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{-a+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào M ta có
\(M=\frac{\left(b+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}=\frac{2a.2a.2a}{aaa}=\frac{8.a^3}{a^3}=8\)
(a-b/c-d)^2=(a-b)^2/(c-D)^2
=a^2-2ab+b^2/c^2-2cd+d^2
=a^2-2ab+b^2/a^2-2cd+b^2
=-2ab/-2cd=ab/cd