Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
Từ \(b=\frac{a+c}{2}\Rightarrow2b=a+c\left(1\right)\)
Từ \(c=\frac{2bd}{b+a}\)thay vào (1) ta được:
\(2b=a+\frac{2bd}{b+a}\)
\(\Leftrightarrow2b\left(b+a\right)=a\left(b+a\right)+2bd\)
\(\Leftrightarrow2b^2+2ab=ab+a^2+2bd\)
\(\Leftrightarrow2b^2+ab-a^2-2bd=0\)
\(\Leftrightarrow2b\left(b-d\right)+a\left(b-a\right)=0\)
\(\Leftrightarrow2b\left(b-d\right)=a\left(a-b\right)\Leftrightarrow\frac{2b}{a}=\frac{a-b}{b-d}\)
B2: Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}hay2ab=c\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)
Do đó: \(\frac{a-c}{c-b}=\frac{a}{b}\)(đpcm)
Vì \(b=\frac{a+c}{2}\)
=>2b=a+c (1)
Do \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{1}{2}.\left(\frac{d}{bd}+\frac{b}{bd}\right)=\frac{1}{2}.\frac{b+d}{bd}=\frac{b+d}{2bd}\)
=>\(\frac{1}{c}=\frac{b+d}{bd}\)
=>2bd=(b+d).c=bc+dc (2)
Từ (1) và (2) ta thấy:
2bd=(a+c).d=ad+cd=bc+dc
=>ad=bc
Đẳng thức này chứng tỏ 4 số a,b,c,d lập nên 1 tỉ lệ thức.
=>ĐPCM
dat :\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;b=dk\)
xet
\(\vec{ }\)\(\left(\frac{a-b}{c-d}\right)^4=\left(\frac{bk-b}{dk-d}\right)^4=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^4=\left(\frac{b}{d}\right)^4=\frac{b^4}{d^4}\left(1\right)\)
\(\frac{a^4+b^4}{c^4+d^4}=\frac{b^4k^4+b^4}{c^4k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}\left(2\right)\)
tu(1) va (2)\(\Rightarrow\) \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(DPCM\right)\)
mình biết mình chết liền